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Abstract
Invasive species are typically viewed as an economic bad because they cause economic and ecological damages, and can be difficult to control.  When direct management is limited, another option is indirect management via bio-controls.  Here management is directed at the bio-control species population (e.g., supplementing this population through stocking) with the aim that, through ecological interactions, the bio-control species will control the invader.  Given the potential complexity of interactions among the bio-control agent, the invader, and people, this approach may produce some positive economic value from the invader.  We focus on stocking salmon to control invasive alewives in Lake Michigan as an example.  Salmon are valuable to recreational anglers, and alewives are their primary food source in Lake Michigan.  We illustrate how stocking salmon can be used to control alewife, while at the same time alewife can be turned from a net economic bad into a net economic good by providing valuable ecosystem services that support the recreational fishery.


We present a dynamic model that captures the relationships between anglers, salmon, and alewives.  Using optimal control theory, we solve for a stocking program that maximizes social welfare.  Optimal stocking results in cyclical dynamics.  We link concepts of natural capital and indirect management, population dynamics, non-convexities, and multiple-use species and demonstrate that species interactions are critical to the values that humans derive from ecosystems.  This research also provides guidance on Lake Michigan fishery management.  
Introduction
Invasive species interact with other species in the ecosystem, thereby affecting the services and value that humans derive from the ecosystem.  Knowler (2005) emphasizes the need to consider interactions among ecosystem components when planning management and valuing the impact of invaders.  While invaders often generate economic costs, some invaders may also produce some economic benefits.  Examples of positive impacts include service as a new prey species for prey-limited valued native predators (Caldow et al. 2007), conservation of highly endangered species outside their native range (Bradshaw and Brook 2007), values associated with introductions of charismatic species (Barbier and Shogren 2004), and mitigating the impacts of previous invaders (Barton et al. 2005; Gozlan 2008).  In particular, non-native species may be intentionally introduced to mitigate the impacts of previous invaders as part of bio-control programs (Hoddle 2004).  Such bio-control agents may also provide other benefits or damages, such that the net effect of such invasion could be positive or negative.  

In this paper, we examine a case in which the introduction of a biocontrol agent turns the prey nuisance species into a source of value.  Zivin et al. (2000) define multiple-use species as species that may cause net benefits or net damages to society, depending on ecological conditions.  Multiple-use species have the potential to result in non-convexities that lead to multiple equilibria, each being potential optima, in which case management history may affect which equilibrium should be pursued (Zivin et al. 2000; Rondeau 2001; Horan and Bulte 2004).  Previous studies of multiple-use species have considered cases where damages are a function of species density, while benefits may accrue through commodity-based harvests or existence values.  These values, particularly benefits, arise as a result of direct feedbacks between humans and the species, and direct population management of the multiple-use species (Zivin et al. 2000; Rondeau 2001; Horan and Bulte 2004).  We examine a case where management of the invader is indirect, stemming from management of a bio-control agent.  Moreover, the source of value is indirect, stemming from the invader supporting the bio-control agent which has value for recreational angling.  Hoddle (2004) advocates greater consideration of bio-control to indirectly managing invasive species.  Management of native species may also indirectly influence the impacts of an invader (Drury and Lodge under review).  Indirect management tends to have (positive or negative) spillover effects on other ecosystem services.  
Spillover effects from management actions that only partially target the species of concern have been shown lead to complex nonlinear feedback rules for efficient management (Mesterton-Gibbons 1987; Horan and Wolf 2005; Fenichel and Horan 2007).  In models of wildlife-disease systems, for instance, management actions such as harvesting are generally non-selective with respect to the disease status of individual animals: there is a chance that harvests could come from either the healthy or the infected population because infected animals are often not identifiable prior to the kill.  Habitat alterations, such as supplemental feeding, also tend to be non-selective and will impact upon both populations.  These imperfectly-targeted management actions can lead to cyclical dynamics in an optimally-managed system (Horan and Wolf 2005; Fenichel and Horan 2007).  
Bio-control represents a different form of indirect management.  Here, management is selective, but it is directed at a different species (the bio-control agent).  The expectation is that management of the bio-control agent will influence predator-prey interactions, resulting in indirect management of the non-targeted species – the invader.  But we still find that indirect management in this case can lead to non-convexities and complex feedback rules involving cyclical management.  
We consider the case of Chinook salmon (Oncorhynchus tschawytscha) and alewife (Alosa pseudoharengus) management in Lake Michigan.  Alewives are an invasive species that directly generate ecosystem disservices by fouling beaches and infrastructure, and indirectly generate ecosystem disserves through their impact on some native fish populations.  Chinook salmon were introduced to Lake Michigan from the Pacific Northwest, both as a bio-control for alewives and to generate a sport fishery.  Alewives comprise the majority of the Chinook salmon diet (Madenjian et al. 2002), and Holey et al. (1998) state that the recreational Chinook salmon fishery may depend on sustaining a large alewife forage base.  Thus, from the anglers’ perspective, alewives provide an important in situ benefit in the production of Chinook salmon.  Management of the system is conducted by stocking Chinook salmon, as alewives are not harvested, and harvest from the recreational salmon fishery is largely unregulated.  

We use the Lake Michigan system as a case study and develop a model that integrates the complex feedback within the ecosystem, the multiple-use species problem, and indirect controls.  We then solve for an optimal stocking program from the agency’s perspective – one that maximizes social welfare, defined as the sum of discounted net benefits from the open-access, unregulated, salmon sport fishery minus alewife-induced damages and the cost of the stocking program.  In this case the agency is not a true social planner because the agency takes angler behavior as given.  This can be thought of as an institutional constraint (Dasgupta and Mäler 2003).  The solution, while efficient from the agency’s perspective, is “second best.”  A “first best” solution would require that managers control angler behavior, and therefore could optimally manage salmon and alewife harvests in addition to stocking. 

We examine the tradeoffs associated with the stocking program in an analytical fashion, and develop general rules that can help guide stocking decision making.  We contribute to the bioeconomic literature by linking non-convexities (Tahvonen and Salo 1996; Rondeau 2001; Dasguta and Mäler 2003) with indirect management and expand understanding of biological capital.  Indirect management is compared and contrasted with imperfectly targeted management (Mesterton-Gibbons 1987; Clark 2005; Horan and Wolf 2005; Fenichel and Horan 2007; Horan et al. in press).  We also contribute to fishery management on Lake Michigan by highlighting the tradeoffs implicit in the Chinook salmon stocking program.  
Background  
Salmon and alewife management is a dominant issue on Lakes Ontario, Huron, and Michigan. Alewives invaded Lake Michigan in 1949 and imposed costs on society by fouling beaches and drainpipes (O’Gorman and Stewart 1999).  Alewives diminished the ability of the Great Lakes to provide ecosystem services.  It is generally believed that alewife have caused negative effects on native fish species (O’Gorman and Stewart 1999).  For example, there is evidence that alewife predation on lake trout (Salvelinus namaycush) fry impedes the restoration of native lake trout (Krueger et al. 1995; Madenjian et al. 2002), and that alewife predation on larval fish has contributed to the decline of yellow perch (Perca flavescens) populations (Shroyer and McComish 2000), perhaps the most widely targeted sport fish in Lake Michigan (Wilberg et al. 2005). 



Managers began stocking Chinook salmon, into Lake Michigan in earnest in 1965 in part to control alewife populations (Madenjian et al. 2002).  Chinook salmon are the main Pacific salmon stocked into Lake Michigan, and today create a valuable sport fishery (Hoehn et al. 1996).  Salmon provide recreational angling benefits and act as a biological control agent on alewives.  Alewives comprise the majority of the Chinook salmon diet (Madenjian et al. 2002), and appear to be a required input as prey for Chinook salmon (hereafter salmon) production (Stewart and Ibarra 1991; Holey et al. 1998).  Accordingly, alewives provide a benefit to the recreational fishery.  
A bioeconomic model of salmon stocking 
The managers’ problem

Consider a fishery management agency that aims to choose a level of stocking, w (mass per unit time) at each point in time that maximizes the discounted social net benefits (SNB) from a fishery resource.  SNB are the sum of individual salmon angler (consumer) surplus (B) minus the amount society invests in the fishery (stocking in kilograms of salmon) and damages (D) caused by the alewife stock (a, measured in biomass):
(1)
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where ( is the discount rate and v is the constant marginal cost of stocking a unit of salmon biomass.  Assume alewife-induced damages, D(a), are increasing in alewife biomass, D((a) > 0, and do so at an increasing rate, D(((a) > 0.
 

In order to choose a stocking program that maximizes expression (1), managers must account for the constraints imposed by angler behavior, ecological dynamics, and the initial conditions.  Models of angler behavior and ecological dynamics are constructed in the next two sub-sections.
An angler behavioral model

Including explicit models of angler behavior is important in fishery management (Wilen et al. 2002). A model of recreational angler behavior is necessarily different than the standard models of commercial fisher behavior (e.g., Clark 1980; Clark 2005; Knowler 2005).  Anglers in a recreational fishery are not coordinated by the market, and each individual’s demand must be accounted for.  The quantity of fishing trips demanded by each individual is a function of the angler’s individual preferences, skills, and costs.  Knowler (2005) argues that that welfare loses from an invader in the Black Sea anchovy fishery are small because the fishery was open-access and all rents had already been dissipated before the invasion – there was nothing to lose (similarly, see McConnell and Strand (1989) for an application involving water quality impairments).  This is not likely to be the case in a recreational fishery because of an individual’s diminishing marginal willingness to pay for an increased quantity of recreational days implies a positive angler surplus even under open-access (Anderson 1983; McConnell and Strand 1989).   


Assume all anglers have the same individual angling preference and skills, but that fishing costs vary across individuals.  Angler utility is 
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.  Following Anderson (1983), u is a quasi-concave, increasing function of days fished, m, and the quality of the fishery, z, which itself is increasing in the salmon stock, s.  Hence, um(m, z(s)) > 0, uz(m, z(s)) > 0, and z((s) > 0, where subscripts denote partial derivatives.  We also assume marginal utility is downward sloping with increases in fishing days, umm(m, z(s)) < 0, and that marginal utility is increasing fishing quality, umz(m, z(s)) > 0.  Finally, the variable x is a composite numeraire good.  Each individual has a budget constraint given by I = x + cm, where I is income and c is a unit cost of fishing that differs across individuals.  Using the budget constraint, we can focus on the following affine transformation of utility, which is a measure of individual angler surplus
 (2)
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This allows utility to be independent of income, and is a common assumption in the empirical literature that may have only small effects on welfare estimates (Herrings and Kling 1999).    

In a recreational fishery, the individual angler has two choices i) whether or not to fish in a given season, and ii) how many days to fish given that he chooses to participate (McConnell and Sutinen 1979; Anderson 1983).
  An angler enters the fishery if V ( 0.  Given that an angler participates, he chooses the number of fishing days, m, to maximize utility. The optimal value of m solves 
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To determine the total level of effort in the fishery, we recognize that each angler has a unique cost to fishing and think of c as a cost type.  Each cost type is treated as a “micro-unit” (Hochman and Zilberman 1978).
  Cost types are ordered in increasing order, such that the last cost type to enter the fishery is 
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 is the cost at which the marginal angler is indifferent about entry and receives zero surplus
(3)
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This condition implicitly defines 
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The assumption of heterogeneous anglers is important to derive a reasonable angler surplus.  If anglers were homogeneous in preference and costs, then equation (3) would not define a threshold for entry.  Either there would be no angler surplus or the total number of anglers participating must be imposed exogenously either as a constant (McConnell and Sutinen 1979) or as an exogenous function of the stock (Swallow 1994).   

Cost types, c, are continuously distributed over the interval [0,(] with the probability density function ((c).  If N is the total number of potential anglers, then the actual number of anglers in the fishery, n(s), depends on salmon biomass and is calculated as
(4)
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Total angler surplus, B, is the sum of angler surplus received by all individual anglers at time t, and is also a function of salmon biomass   
(5)
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Total catch per unit time, h(s), is derived similarly and also depends on salmon biomass  
(6)
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Fish population models 
The fishery manager must take into account the dynamics of the fish stocks and their interactions with other species.  Define the dynamics of the harvestable salmon stock in terms of biomass as
(7)
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The first term in equation (7) is the total recruitment to the fishery, where b the reproductive contribution from the stock and is independent of the stock size, i.e., b fish produced per unit time in nature rather than by stocking.  This is motivated by an assumption that the limited spawning habitat will be saturated (implying strong density-dependent mechanisms) (Kocik and Jones 1999) and follows other models of natural salmon reproduction in Lake Michigan (Jones and Bence in review).
  ((a) is a scaling function that scales biomass at stocking or biological recruitment to harvestable biomass or recruitment to the fishery as function of the alewife (prey) stock.  At higher alewife levels more young salmon survive and the average fish is larger.  
The natural mortality rate of salmon in the fishery, ((s, a), is a function of salmon and alewife biomass.  We assume the salmon mortality rate is a decreasing, convex function of alewife biomass, (((s, a)/(a < 0, (2((s, a)/((a)2 ( 0, so that as alewife biomass increases, ultimately salmon reach a minimum mortality rate.  We also assume that 
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.  Specific functional forms are specified in the simulation section.  
The alewife population is defined in terms of biomass and follows logistic growth,
(8)
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where r is the net recruitment rate of biomass in the limit as stock size approaches zero (recruitment minus non-predation mortality) and K is the alewife carrying capacity.  The function P(s,a) is salmon predation on alewife.  As salmon biomass increases, salmon consume more alewife, (P(s,a)/ (s > 0.  A unit increase in the salmon biomass may lead to a constant rate of increase in the amount of biomass consumed, or intra-specific competition may lead to a decline in the amount of alewife consumed per salmon as salmon biomass increases, (2P(s,a)/((s)2 ( 0.  For simplicity, assume (2P(s, a)/ ((s)2 = 0, so that P(s, a) = sP(a), where P(a) is the biomass of alewife consumed by a biomass unit of salmon.  Salmon consume more alewife as alewife biomass increases, such that P((a) > 0.  However, the rate at which salmon consume more alewife biomass as alewife biomass increases may decline with increasing alewife biomass, P(((a) ( 0.  That is, the response of salmon to increases in alewife biomass may be saturating, but sP(a) should be related to ((s, a).  This is made explicit in the simulation below.  

Optimizing social welfare through stocking
The agency cannot manage all aspects of the system (harvests of salmon and alewife, in addition to stocking), as would be the case in a first-best world.  Rather, the agency only controls the stocking program.  Accordingly, the agency is necessarily constrained to second-best management.  The stocking program provides indirect management of the alewife stock and does not perfectly targeted the fishery.  When managers alter the salmon stock through stocking, the change in the salmon stock indirectly affects the alewife stock and angler behavior.  Angler behavior and the alewife stock, however, have feedback effects on the salmon stock.  
The agency’s problem is defined as choosing w to maximize (1) subject to equations (7) and (8).  This requires that the agency explicitly consider equations (5) and (6).  The agency’s problem can be solved using the maximum principle (Clark 2005).  Write the Hamiltonian as
(9)
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where λ and ( are the co-state variables associated with the salmon and alewife stocks respectively.  Note that this problem is linear in the control w.

The marginal impact of stocking salmon is given by
(10)
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The right-hand-side (RHS) of expression (10) is the coefficient of stocking from the Hamiltonian.  If (H/(w > 0, then stocking always increases the value of the Hamiltonian and so stocking should be set at the maximum limit (an exogenously imposed limit, denoted 
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, that may represent hatchery capacity).  On the other hand, if (H/(w < 0, then stocking always decreases the value of the Hamiltonian and so stocking should be set to zero.  These are constrained solutions.  Another possibility is that (H/(w = 0.  When this occurs, then w should be set at its singular value w*.  In this case, λ equals the marginal cost of stocking scaled for survival to the fishery, λ = v/((a).  The complete solution can be written as a feedback rule dependent upon the alewife stock.
(11)
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Conrad and Clark (1987, p.76) state that linear control problems guarantee the optimality of constrained solutions, which they refer to as “bang-bang” controls.  In the linear control problem they describe, a constrained solution is pursued to a steady state equilibrium, and then the singular solution is adopted to maintain the system at equilibrium.
  This illustrates a case of rapid adjustment and then maintenance at equilibrium.  This result relies on the existence of control variables for each state variable, where each control is perfectly targeted and directly affects only a single state variable at a single point in time.  More complex feedback rules may emerge when these conditions do not hold (Mesterton-Gibbions 1987; Horan and Wolf 2005), such as in the present case where only a single control variable (stocking) is used to affect two states – one (salmon) directly but imperfectly (since stocking only increases the salmon stock) and the other (alewife) indirectly via ecological interactions.  Under these conditions, it can be optimal to pursue the singular solution, specified in the form of a nonlinear feedback rule, when the system is out of equilibrium.  This means that adjustment is not as rapid as it is when the controls perfectly target the states of the system.  The slow adjustment under imperfect targeting is akin to the slow adjustment in capital that arises in investment models with convex investment costs (e.g., Liski et al. 2004), as imperfect targeting in the current application effectively generates convex adjustment costs that make the nonlinear feedback rule optimal.  

Regardless of the type of solution, an optimal program requires that two adjoint equations associated with the co-state variables be satisfied at each point in time (Conrad and Clark 1987)
(12)
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(13)

[image: image25.wmf](

)

(

)

(

)

(

)

(

)

a

P

s

K

a

r

a

s

s

a

w

b

a

D

a

H

a

¢

+

÷

ø

ö

ç

è

æ

-

-

-

¢

+

-

¢

+

=

¶

¶

-

=

m

m

d

q

l

rm

rl

m

2

1

)

,

(

&


These conditions prevent intertemporal arbitrage opportunities.  If these conditions are not satisfied, then welfare gains can be made by reallocating stocking across time.  The arbitrage conditions may be manipulated into two “golden rule” equations that must hold at each point in time (Conrad and Clark 1987):
(14)
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(15)
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These golden rule equations highlight tradeoffs associated with increases or decreases in salmon and alewife biomass.  

Consider equation (14).  The discount rate, (, is society’s rate of time preference and can be thought of as the opportunity cost of investing in the salmon stock.  The RHS of equation (14) collectively represents the rate of return to investing in the salmon stock.  The first term on the RHS is a capital gains term that will be zero at a steady state equilibrium.  The second RHS term is the normalized angler surplus gained from a larger salmon stock at the margin, and is always positive.  This term indicates that, ceteris paribus, anglers are better off with a larger salmon stock because a larger salmon stock increases fishing quality, thereby increasing angler welfare.  The third RHS term is the marginal impact of an increase in the salmon population on the alewife resource, on which the salmon population depends.  This term is negative, as increasing the salmon population decreases the alewife population.  A reduced alewife stock supports a small smaller salmon stock.  The fourth and fifth RHS terms together are the effect of the salmon stock on its own marginal growth.  The fourth term, the term in the square brackets, is the direct effect of the salmon stock on the salmon natural mortality rate.  This term results because an increase in the salmon population increases the salmon natural mortality rate, by reducing the prey base per unit of salmon.  This is a natural mortality effect.  The final RHS term represents the change in salmon mortality with an increase in the salmon stock due to changes in angler behavior.  This term is negative: an increase in the salmon stock increases the total effort and thus total catch in the fishery, reducing future fishing opportunities ceteris paribus.  This is a fishing mortality cost.  

Equation (15) is also a golden rule equation, but its interpretation depends on whether alewives are a nuisance ((<0) or an asset ((>0).  When alewives are a nuisance, then the discount rate represents the opportunity cost of diverting resources from elsewhere in the economy to manage the invasive alewives and their associated damages.  The RHS then represents the rate of return from nuisance control.  When alewives are an asset, then the interpretation is the same as it was for salmon: the RHS is the rate of return to investing in alewives, while ( is the opportunity cost of that investment.  In our numerical analysis we find that alewives are primarily an asset under optimal management.  In that case, the first RHS term is a capital gain/loss term that will be zero at equilibrium.  The second RHS term represents the marginal alewife-induced damages.  The third RHS term is the marginal benefits of alewife as prey for the recreational salmon fishery.  The fourth and fifth terms together represent the marginal impact of alewife on reproduction.    

Solving for the singular feedback rule


The approach for finding the nonlinear feedback rule for the singular solution is similar to Fenichel and Horan’s (2007) procedure for finding a partial singular solution (their model has two control variables).  First, set equation (10) equal to zero and solve for ( = λ(a).  Next, take the derivative of ( with respect to time, yielding 
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, and substitute λ(a) for ( and ((s,a) for 
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 in condition (12).  Solve the resulting equation for ( = μ(s, a) and take the time derivative 
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, λ(a) for (, and ((s,a) for ( in condition (13), and solve for w.  The solution is a nonlinear feedback rule for the singular solution w* = w*(s, a).    


As indicated in equation (11), the singular solution is only part of the stocking solution.  Constrained controls are also possible.  Combinations of state variables such that w*(s, a) ( 0 or w*(s, a) ( wmax provide a necessary, though not sufficient, condition for a constrained solution (i.e., w = 0 or w = wmax).
  The arcs where these equalities hold outline the boundaries, in state space, of blocked intervals – intervals over which the control is constrained or blocked from taking on its singular value (Arrow 1968).  
The problem of when to pursue the singular solution and when to pursue a constrained solution (i.e., the delineation of blocked intervals) is inherently numerical, even in relatively simple problems (Arrow 1968).  This is particularly true for the current problem, where the multiple-use species aspect of the problem and the complex human-ecological relationships resulting from indirect management of the two species can lead to non-convexities and multiple equilibra (Zivin et al. 2000; Rondeau 2001; Horan and Bulte 2004; Crepin 2003).  For problems with non-convexities, “what is required is the sheer brute force of computing welfare along candidate programs and comparing them” (Dasgupta and Maler 2003).  We therefore now turn to a numerical analysis of the problem.  We begin by specifying functional forms.  
Specifying the numerical model
We now specify explicit functional forms for the remaining implicit functions in the model.  All parameter values are specified in the Appendix.  We have used the best available data on the salmon-alewife-angler system to calibrate the model.  The functional forms have been chosen to be as simple as possible while capturing desired aspects of the relationships that are consistent with theory and economic and biological knowledge.  Accordingly, some processes have been condensed to simple functional forms to improve tractability. For example, many biological relations are often assumed to depend on the size of individuals, and given that fish change orders of magnitude in size over their lifespan, this required that some parameters be rescaled to apply to the average of aggregated individuals represented in our model by the biomass of alewife or salmon.  The quantitative rescaling required judgment.  Consequently, our specific numerical results should be used as a guide to help navigate the often perplexing outcomes of more complex models that explicitly incorporate age and/or size structure.  Nonetheless, the model captures the ecological and economic interactions associated with salmon stocking programs and helps illustrate interactions between non-convexities and imperfectly targeted controls.
Economic functions

The exact nature of the alewife damage function is unknown, but given the assumptions that D((a) > 0 and D(((a) > 0, we use a second order approximation to a convex function D(a) = Da2, where D is a damage parameter.  The angler “inverse demand” function takes the form 
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 is a parameter.  The distribution of cost types is assumed to be log-normally distributed (Just and Antle (1990) recommend this distribution for micro-parameter models as a default) with a mean of η and standard deviation (.  
Ecological functions
We define the function 
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 so that salmon mortality declines linearly with increases in the biomass of alewife consumed per biomass unit of salmon.  The parameter α is the instantaneous annual mortality rate with zero alewife, α-( is the instantaneous annual mortality rate at satiation.  Following Jones and Bence (in review) we assume that salmon have the type-II predator response function 
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, with parameters ( and ( (Bonsall and Hassell 2007).  This specification creates a direct connection between salmon survival and prey consumption and satisfies the conditions above.  The alewife population also affects the stocking survival and recruitment to the fishery.  We model this with a scaling function, 
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Results 
We begin by analyzing the results of a base model using the parameters from the Appendix.  Later, we examine the sensitivity of these results to alternative parameter values.  Mathematica 6.0 (Wolfram Research) was used to implement the model.  

Given an initial state of the world, s0 and a0, the agency planner must choose a stocking program.  This program may include constrained or singular values of w (i.e., w = 0, w = wmax, or w = w*(s, a)) at different points in time.  The choice of when to apply which type of solution is a common problem when multiple populations are managed with a smaller number of controls than states, or with imperfectly-targeted controls (Mesterton-Gibbons 1987; Horan and Wolf 2005; Fenichel and Horan 2007; Horan et al. in press).  
Our approach to developing an understanding of system dynamics and the optimal management strategy is to first consider dynamics with no stocking, then dynamics with stocking at the maximum rate, and third dynamics when w = w*(s, a) is a possibility for some combinations of s and a.  Finally, we explore an optimal solution in which the singular stocking level and the two constrained stocking levels are all feasible options.
Dynamics when w = 0
First consider the dynamics if stocking were forgone (Figure 1), but with salmon established in the system.  There are two equilibria; a high alewife state (A) and a low alewife state (B).  The phase dynamics show that equilibrium point A is locally stable when no stocking takes place.  This is confirmed by examining the eigenvalues of the linearized system at equilibrium A (both eigenvalues are negative).  Equilibrium B is only stable if approached along a unique saddle path (SP).  This is confirmed by examining the eigenvalues of the linearized system at equilibrium B (one is positive, the other is negative).  For initial points above SP, the system will tend towards equilibrium A.  For initial points below SP, alewives will be eradicated and salmon will disappear.
  Path SP therefore bifurcates the system, dividing the phase plane into alternate basins of attraction.  
Dynamics when w = wmax
Now consider the dynamics when stocking always occurs at the maximal value w = wmax (Figure 2).  In this case the salmon stock builds up, which then reduces the alewife stock via predation.  Indeed from any initial condition, pursuit of a maximum stocking strategy leads to alewife eradication.  Recall that alewives are necessary for salmon recruitment and survival, for both wild and stocked salmon.  This means that alewife eradication implies collapse of the salmon stock – even in the presence of continued stocking.

Dynamics when w = w*(s, a)

Now consider the non-linear feedback rule associated with the singular solution, w = w*(s, a).  This feedback rule will only be valid in the portion of the state space where 
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.  We therefore begin by defining the boundaries of this interior region, where the boundaries are given by w*(s, a) = 0 and w*(s, a) = wmax (see Fenichel and Horan 2007 and Horan et al. in press for a similar approach).  Boundaries are plotted in Figure 3 (and later in Figures 4 and 5) as dashed lines (Figure 3).  Beyond each boundary (shaded regions), stocking necessarily becomes constrained (though, as we describe below, stocking at w=0 is not necessarily optimal in the region below the w*(s, a) = 0 boundary), and the dynamics under these constraints follow the corresponding dynamics from Figures 1 and 2.  Figure 3 is therefore not a standard phase plane, but rather splices portions of the phase planes in Figures 1 and 2 with a phase plane representing the singular solution dynamics.  Figure 3 is therefore best described as a “feedback control diagram” (Clark et al. 1979; Conrad and Clark 1987).  
The feedback control diagram divides the state space into three regions.  The first region lies above the w = wmax boundary, where the singular solution would imply stocking at greater than the maximum rate (this appears as two regions on the phase plane).  Paths that move into this region are necessarily constrained along a blocked interval.  The second region lies below the w = 0 boundary, where the singular solution would imply negative stocking.  Paths that move into this region are also necessarily constrained along a blocked interval.  The third region lies between the boundaries, and represents the region where the singular solution w = w*(s, a) is feasible (though the optimality of pursuing the singular solution at any point within the interior region is not guaranteed, therefore this region does not necessarily represent a free interval).  


In Figure 3, the 
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 isocline bends sharply when it enters and leaves the interior region.  The 
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 isocline is unaffected by the stocking level because stocking only has indirect effects on alewife.  Within the interior region, the 
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 isoclines cross at points Y and Z.  The eigenvalues of the linearized system at point Y are imaginary with positive real parts, indicating that equilibrium Y is an unstable focus.  The local dynamics are indicated by the phase arrows.  There is one positive and one negative eigenvalue for the linearized system at point Z, resulting in a conditionally stable or saddle point equilibrium.  The separatrices that lead to point Z within the interior region vanish at the boundaries of the constrained regions.  In each of the constrained regions, there is also one unique path that, if followed, can move the system from the constrained region to the separatrix in the interior region (dotted line in Figure 3).  Splicing these paths together yields a piece-wise continuous “saddle path” to equilibrium Z.  
Optimal stocking strategies

Economically optimal solutions to dynamic resource problems very often involve moving to a saddle path and then following that path to a saddle point equilibrium (e.g., Clark 2005).  We will show this is not the solution here: it is impossible to move to the “saddle path” when starting to the right of it, and an alternative path dominates the “saddle path” when starting to the left of it.  Hence, the “saddle path” divides the feedback control diagram into two basins of attraction, with the optimal stocking strategy being dependent upon whether the system initially lies to the left or the right of the “saddle path”.  That history matters for the optimal solution is not uncommon in problems with non-convexities (Tahvonen and Salo 1996; Rondeau 2001; Horan and Bulte 2004).  


First consider the solution for initial points lying to the right of the “saddle path”.  We consider an initial point in the w = wmax region, though the results would be unaffected by starting at any other point to the right of the saddle path.  Starting in the w = wmax region and setting w = wmax, the system will stay to the right of the saddle path and eventually move into the interior region.  Once in the interior region, we could switch to the feedback rule w = w*(s,a), which would continue to steer the system away from the saddle path until the w = 0 boundary is crossed.  Then we could adopt w = 0, which again would continue to steer the system away from the saddle path until the system eventually collapses, as occurs below SP in Figure 1.  However, given that the system does eventually collapse, it turns out that maintaining w = wmax throughout is optimal.  This can be thought of as a most rapid approach path (MRAP) to the eventual equilibrium.  The MRAP generates larger benefits than the alternative path because stocking generates large angler benefits while the system moves towards collapse.  That the MRAP generates larger net benefits is verified numerically.

Note that setting w = 0 in the w = 0 region does not lead to a “jump” to the saddle path.  This is because the only way for salmon to be removed from the system is through harvests and through natural mortality, neither of which is controlled by the managers.  The salmon population, therefore, responds slowly to management.  In contrast, adopting a policy of no stocking while in the w = wmax region would move the system back to the “saddle path” in this region.  However, this does not reduce the salmon stock and move the system back into the interior fast enough, and in the interim the benefits from salmon harvests are reduced relative to the case of maximum stocking.  Recognizing this, it is optimal for managers to stock the maximum amount of salmon and capture the short-term angling benefits.  The same holds true for initial values in the interior region to the right of the “saddle path” (numerical results support these conclusions).

Now consider starting points to the left of the saddle path.  Without loss, we take equilibrium A from Figure 1 as the initial condition.  Starting from point A, there are potentially three candidate programs: i) always stock at the maximum rate and move past the “saddle path” and eradicate alewives, ii) move to the “saddle path” and pursue it to equilibrium Z, and iii) move to a stable limit cycle around equilibrium C, provided a stable limit cycle exists.  Each solution must be evaluated numerically and compared.  


First, consider stocking at the maximum rate, moving past the “saddle path,” and eradicating alewife.  The value of expression (1) is first evaluated numerically along a path from equilibrium A by stocking at the maximum rate until a << 1 (i.e., a MRAP).  This yields $54 million in benefits.
    
Now consider moving quickly to the “saddle path” and then pursing it to the equilibrium Z.  Expression (1) is evaluated along a path originating at equilibrium A and stocking at the maximum rate to the “saddle path”, and then following the stocking program implied by the “saddle path” until the system arrives at equilibrium Z.  This program yields $44 million in benefits. 

Finally, consider the possibility of a piece-wise continuous stable limit cycle around equilibrium Y (see Figure 3).  Starting at equilibrium A the feedback rule implied by the singular solution is applied.  Doing so leads to the w = wmax boundary, and the start of a blocked interval with w = wmax.  Stocking at wmax eventually leads back to the interior region, where stocking at w = w*(s, a) is again feasible.  Continuation along the path defined by the singular solution will eventually lead to another blocked interval where w = 0.  Pursuit of the singular solution to the constraining boundary is myopic, and it is optimal to set stocking to zero prior to encountering the constraining boundary (i.e., the premature switching principle; see Arrow 1968; Clark et al. 1979; Clark 2005). 
  Stocking is forgone until the system re-enters the interior region at the w = 0 boundary (to left of equilibrium Y in Figure 3).  In the interior region the singular solution is pursued until the w = wmax boundary is again approached, where stocking is constrained to the maximum.  Stocking continues at the maximum rate until the system re-enters the interior region.  The singular solution is then pursued until the arc that resulted from the previous pre-mature switch is intersected.  At that point the far-sighted planner switches to w = 0, creating a piece-wise continuous stable limit cycle.  Expression (1) evaluated along such a program (as drawn in Figure 3) results in net benefits of $210 million.        
Intuition and Explanation 
Stable limit cycles have not been a common outcome of bioeconomic models of renewable resources, but Wirl (1992; 1995) hypothesized they should be  ​– especially in systems with predator-prey interactions.  Wirl (1992) examined a class of optimal control problems involving two states and one control and, in the context of our model and notation, he showed a necessary condition for a stable limit cycle is satisfied when 
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  This inequality holds in our model as 
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.  These relations imply a particular type of interdependency between the two stocks: more of a generates positive spillovers on population s, while more of s generates negative spillovers on population a.  So increasing salmon, e.g., via stocking, will reduce the rate of increase in alewife biomass.  But reduced growth of alewife biomass negatively impacts the salmon population, which in turn has a positive effect on the alewife population.  It is difficult for the system to stabilize under these circumstances when the manager is limited to a single control.  

Wirl (1992) does not describe the intuition behind his result, but the intuition can be obtained by recalling that biological stocks are capital resources.  Individual biological stocks exist in complex ecosystems and interact with other biological stocks, thereby necessarily linking the growth path of biological capital resources within a given ecosystem.  Yet, controls, or the abilities to reallocate biological capital, are often limited and therefore imperfectly targeted.  For instance, a manager may utilize a control that simultaneously impacts multiple stocks (e.g., Fenichel and Horan 2007).  Or, as in the present case, the manager may only be able to direct controls at one stock, meaning the other stock is managed indirectly through ecological interactions.  A first-best outcome in our model would involve controlling harvests of both species in addition to stocking.  But in our model managers only have the power to increase the salmon stock.  This is essentially a problem of irreversible investment in salmon capital, with endogenously-determined depreciation arising due to natural mortality and unregulated angling mortality.  Managers have no direct mechanisms for managing the alewife capital stock, though investments in salmon can be seen as an investment in the capacity for alewife predation.  This is akin to Clark et al.’s (1979) problem of irreversible investment in fishing capacity, though management is somewhat less direct in the present case since actual predation effort (analogous to fishing effort in Clark et al.’s model) is not a choice as it was in Clark et al.’s model.  The inherent second-best nature of this ecological investment and management problem results in convex adjustment costs and sluggish capital adjustment (Clark et al. 1979; Liski et al. 2001), which can lead to the overshooting and undershooting of an equilibrium (Clark et al. 1979).  
This overshooting and undershooting, resulting from the single control and the condition 
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, contributes to the stable-limit cycle in our model.  But, in contrast to Wirl’s (1992) results, additional elements are necessary for the current problem.  Wirl’s problem was nonlinear in the control, and this feature is what allowed him to derive a stable-limit cycle that is everywhere continuous and to characterize the necessary conditions for this outcome.  Our problem is linear in the control, which means the premise of Wirl’s necessary conditions for limit cycles are not satisfied in our model.  Still, the condition 
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, along with a single control, is important for the reasons described above.  With these features, a piecewise continuous stable-limit cycle can emerge in our model if the following conditions are also satisfied: (i) an unstable equilibrium arises in the singular region of our feedback control diagram, and (ii) the dynamics in the relevant constrained regions (state space where blocked intervals must be located)  move the system back into the interior.  This second requirement, in our model, means that the separatrix associated with w=0 must lie beyond the w = 0 and w = wmax boundaries within the neighborhood of the singular portion of the cycle.  We do not prove these statements formally since the solution is inherently numerical.  However, we do illustrate the point by examining a case in the sensitivity analysis (below) in which these conditions are not satisfied and there is no interior cycle. 

Condition (ii) is associated with hysteresis as the separatrix associated with w = 0 divides the system into two basins of attraction.  Once the system crosses the separatrix from above, there is no management action that can be taken to return the system to region above the separatrix.  The separatrix incorporates the anglers’ decisions, but is otherwise exogenous with respect to the manager’s decision.  Fenichel and Horan (2007) and Horan et al. (in press) also find piecewise continuous stable-limit cycles to be optimal in a linear control setting, and their solutions also satisfy conditions (i) and (ii) above.  But their models involved an additional control.  As a result, the separatrices in their models were endogenous and hysteresis was not required to satisfy condition (ii).  When one control variable was removed from the Fenichel and Horan (2007) model, then condition (i) was not satisfied and the equilibrium was conditionally stable. 

We now explain the clockwise rotation of the stable-limit cycle in Figure 3.  The dynamics illustrate changes in stocking levels in addition to changes in the states.  To see this, note that stocking increases as the system moves from the w = 0 boundary to the w = wmax boundary, and vice versa.  

Stocking and alewives are complements in the production of fishing services to salmon anglers.  When the alewife population is small, stocking has little impact on salmon productivity at the margin.  But as the alewife stock increases, the marginal impact of stocking on salmon production increases.  At the same time, stocking increases the salmon population, which reduces alewife.  The reduction in alewives reduces damages, but it also reduces the productivity of salmon.  So the choice of when and how much to stock is a balancing act.  
Stocking is initiated in the stable-limit cycle in Figure 3 when the alewife population is sufficiently large and increasing (at the point where the path crosses the w = 0 boundary).  Here, marginal damages due to alewives are small in comparison to the marginal benefits that alewives provide to the salmon fishery.  Stocking levels continue to increase as the alewife population continues to grow.  When the path crosses the 
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 isocline, the alewife population has become too large and the marginal damages it generates exceed its marginal benefits to the salmon fishery.  Stocking then grows to its maximum level, increasing the salmon population and benefitting anglers while simultaneously controlling the alewife population to reduce damages.  As the alewife population is diminished, the incentives to stock decline and stocking levels fall and eventually cease.  The reduced alewife stock means that the salmon stock will also decline (as the path crosses the 
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 isocline), and both populations decline for a time.  Eventually, the reduction in salmon numbers allows the alewife population to recover as the system intersects the 
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 isocline.  This increase in alewives is initially beneficial as the marginal benefits to the salmon population exceed the marginal damages generated.  Eventually stocking is re-implemented and the cycle begins again. 

The marginal value of additional alewives, μ, is generally positive within the optimal program.  In the absence of the salmon fishery, however, μ would necessarily be negative and alewives would be a nuisance.  This result extends, to a broader ecosystem service context, prior work on multiple-use species that focused only on using existing or newly-created markets to tap into the harvest-related demand for a nuisance species and turn the species into a source of net value (Zivin et al. 2000; Horan and Bulte 2004).
Sensitivity Analysis

We now present sensitivity analyses.  In the interest of space we focus on three parameters of interest: the alewife-induced damage parameter, D, the amount of natural recruitment, b, and the discount rate, (.  This model has a large number of parameters and we could, in principle, evaluate how our model results change in response to changes in each of them.  Doing so would require drawing and analyzing a new feedback control diagram for each parameter change.  Parameters D and b were chosen due to the high degree of uncertainty associated with these parameters.  The parameter ( was chosen because the discount rate can have a strong affect on intertemporal tradeoffs.     
Alewife induced damages

The relationship between alewife damages and the stock size is unknown.  Varying this parameter helps understand the multiple-use species nature of the problem.  We investigate the effect of increasing D by one and two orders of magnitude.  First consider an order of magnitude increase in D.  In this case the feedback control diagram (not illustrated) looks almost identical to Figure 3 (Figures 1 and 2 are unaffected).  We follow the same process of evaluating expression (1) given various management programs, and again find that a path involving a piece-wise continuous stable limit cycle similar to the one in Figure 3 is optimal, yielding net benefits of $120 million.  Net benefits are lower here due to the increased damages.

If the damage parameter is increased by another order of magnitude, then there is a qualitative change.  Figure 4 shows the feedback control diagram for this case.  There are no interior equilibria.  Equilibria A and B (from Figures 1 and 2) would both lie in the w = wmax region.  No stable limit cycle is possible in this case.  One problem is the lack of an interior equilibrium.  A second problem is that the w=0 saddle path lies in the interior region.  Any interior path moving towards the right must cross this saddle path before turning back around.  However, once the saddle path is crossed nothing can be done to prevent the system from collapsing.  A cycle is therefore not possible.  In this case stocking at wmax until alewife are eradicated yields ($38 million in net benefits.  For comparison, stocking at the maximum rate until SP is intersected and then ceasing stocking to arrive at equilibrium B yields ($111 million in net benefits.  It is optimal to stock at the maximum rate and eradicate alewives.  Furthermore, in contrast to the baseline scenario, we find that alewives generally have a negative marginal value along the optimal path.   

Wild reproduction

There were no wild spawned salmon in the Great Lakes in the early 1960s, when the Chinook salmon stocking program began.  Yet, by the mid-1970s there were reports of Chinook salmon naturally reproducing in the Great Lakes (Kocik and Jones 1999).  To consider the impact of wild reproduction on the optimal management program, we again adopt the baseline parameters but decrease wild reproduction to b = 0.  This is the problem managers may have believed they faced when Chinook salmon were first introduced.  


The dynamics of the constrained solutions are similar to those displayed in Figures (1) and (2).  In the interest of space we do not redraw those phase planes.  Note, however, that in the case of no stocking there are no interior equilibria.  Equilibrium A shifts to the point (0, K), and equilibrium B shifts to the origin.  The local dynamics near the equilibria remain the same, with a saddle path leading to the origin.  When stocking is set at the maximum rate, the 
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 isocline, conditional on w = wmax, shifts to the left (relative to Figure 2) but there are still no interior equilibria.  Otherwise the dynamics are the same.   


The feedback control diagram is illustrated in Figure 5.  We continue to evaluate the optimal strategy from the point of equilibrium A (Figure 1) in order to facilitate comparison with the case of natural reproduction.  As with the baseline case, we find optimal management is achieved by a piece-wise continuous stable limit cycle.  There are subtle differences from the natural reproduction case.  Notice that the optimal cycle never comes close (relative to Figure 3) to the “saddle path” (dotted line) or w = 0 boundary.  The system responds in a qualitatively similar manner to increases in D. 
The discount rate

The discount rate was chosen in order to understand how time preferences affect optimal management.  To examine changes in time preference, we again adopt the baseline parameters but increase the discount rate from 5% to 10%.  The feedback control diagram is not illustrated for this case, but the effect is to shift equilibrium Y down and left slightly relative to Figure 3.  A stable-limit cycle is still optimal, though it will also shift down and to the left so that there will be fewer salmon and alewife on average.  These shifts come about because the higher discount rate reduces the value of future salmon angling, reducing the incentives to conserve salmon or its prey.  Discounted net benefits are also reduced in this scenario (to $90 million).
Conclusion
The economic-ecological interactions associated with the Lake Michigan salmon fishery are more complex than any model can fully capture, but the results presented here provide insight into the tradeoffs associated with the salmon stocking program.  This analysis can be used to inform stocking policy in concert with more complex simulation models (e.g., Szalai 2003; Jones and Bence in review).  Other authors have used simulation modeling to test that hypothesis that state-dependent stocking rules outperform constant stocking strategies (e.g., Szalai 2003; Jones and Bence in review).  Here we show how the principles of dynamic optimization can be applied to derive optimal state-dependent feedback rules for a stocking-bio-control problem that explicitly accounts for the ecosystem services and dis-services generated by alewives.    

O’Gorman and Stewart (1999) chronicle the debate about whether alewives should be viewed as a nuisance invader or as a prey fish asset.  The model we have presented shows that alewives can be viewed as a multiple-use species.  With no salmon fishery, alewives are clearly a nuisance as they only produce economic damages.  But with the salmon fishery, alewives produce ecosystem services for the fishery and, in so doing, become a source of net value in all but the most extreme parameterizations for damages.  The marginal value of alewives would only increase if the salmon fishery were regulated more efficiently (though the total alewife population may optimally decrease), as the value of salmon – and hence the value of alewives as an input into salmon production – would increase.

The idea that biological stocks are capital has broadened beyond the realm of resource economists (Daily et al. 2000; Turner and Daily 2008), and there is increasingly broad recognition that species interactions are critical to the values humans derive from ecosystems.  Ecological production functions are complex.  Analysis of ecological-economic systems potential requires inclusion of biotic and abiotic interactions, thresholds, and multiple basins of attraction.  Management that accounts for these interactions often will involve indirect management.  In this paper, we have used bio-control as an example, but other control possibilities also have indirect or imperfectly-targeted effects that lead to spillovers.   Indeed, ecosystem management often involves managing many forms of ecological capital with few control options.  Given these complexities, Wirl (1992; 1995) hypothesized that optimal limit cycle behavior should be common in renewable resource economics.  Yet, such results are just starting to emerge in the literature (e.g., Horan and Wolf 2005; Fenichel and Horan 2007; Horan et al. in press).  The complexity of the cycles that emerge from this relatively simple model illustrates the complexities and difficulties managers face in managing biological and ecological capital efficiently.  
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Appendix
This appendix explains the calibration of the model.  Most biological parameters for fish are based on size, we use age and weight data to convert these for parameters relevant to a “representative fish.”  The instantiations net recruitment rate for alewife, r, was calculated based on per biomass recruitment of alewife minus the natural mortality rate for alewife as 5.41 (Szalai 2003).  The carrying capacity for alewife, K, was based on simulations of the LMDA model with no stocking, and was estimated at 2.89 ( 109 kilograms of alewife (Jones and Bence under review).  The predation parameters β and ( where calculated based on bioenergetics, weight, and age data reported in Szalai (2003) as β = 1.67 ( 10-4 and ( = 4.27 ( 10-8.  The salmon mortality parameters α = 5.82 and ( = 0.02 were chosen such that salmon had a high instantaneous mortality rate in the absence of alewives and were comparable to the imputed representative instantaneous mortality rates reported by Benjamin and Bence (2003) associated with comparable alewife biomasses.  Salmon recruitment to fishery parameters ( = 0.1 and y = 58 where based on bioenergetics parameters in Szalai (2003) and then manipulated to fit historic salmon levels.  Salmon natural recruitment was assumed to be 10,000 kg - approximately ¼ the maximum allowable stocking rate, which was chosen to be slightly greater than historic high stocking levels at 40,500 kg (Michael Jones, Michigan State University, personal communication).  


The recreational angling behavior parameters included (1 = 19.95, (2 = 16.57, (3 = 29.94, ( = 12.31, and ( = 12.37.  An additional parameter was added to the cost function so that the lognormal distribution was shifted to the right so that it was defined from $35.05 to infinity.  Therefore the average cost of a trip was $47.36.  These parameters were estimated by assuming 13% of angling licenses sold in Michigan resulted in Lake Michigan salmon fishing trips, and fitting a time series of the number of anglers, effort, catch, and salmon biomass (Benjamin and Bence 2003 and Jones personal communication) to the angler response model by minimizing the sum of the squared error between that model projection and observations, weighted by the inverse of the standard deviation of the individual data sets.  The daily catchablity, q = 6.43 x 10(8 is based on Benjamin and Bence (2003) converted for different time units.  The marginal cost of stocking a kilogram of salmon, v = $19.55 was based on personal communication with Gary Whelan (Michigan Department of Natural Resources) and weight-at-age data (Szalai 2003).  The maximum number of anglers was assumed to be the largest value in the number of angler time series.  The discount rate, (, was assumed to be 5%. 

The specific relationship between alewife stock size and damages is unknown.  Therefore, we first investigate cases with a low level of damage (D = 1.79 ( 10(13, resulting in $1.5 million in damages when alewife are at carrying capacity) and then, in the sensitivity analysis section, consider one and two orders of magnitude higher alewife-induced damages (D = 1.79 ( 10(12 and D = 1.79 ( 10(11).
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Figure 1. Dynamics with no stocking.  
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Figure 2. Dynamics with stocking at the maximum rate.
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Figure 3. Feedback control diagram showing the optimal stocking program.  Phase arrows are associated with singular solution. 
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Figure 4. Feedback control diagram with very high alewife-induced damages. Phase arrows are associated with singular solution. 
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Figure 5. Feedback control diagram with no natural reproduction. Phase dynamics are as drawn in Figure 3. 
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� This seems reasonable at the relevant biomass levels for alewife.  There will be a level of alewife at which alewife cease to cause marginal damages, but this level is likely higher than the stock sizes considered.   


� We assume all fish caught are landed as this generally depicts the Lake Michigan salmon fishery, but see Fenichel (working paper) for a relaxation of this assumption in a more general model.


� This approach could also be extended to skills and preference, but this would greatly complicate the model.  Assuming heterogeneous costs captures the general nature of the unregulated, open-access recreational fishery.  


� Biological rates are often written as a proportional change, i.e., � EMBED Equation.3  ���.  A standard logistic growth function can be written � EMBED Equation.3  ���, where f(s) is the density dependence component.  In our model strong density dependence is included as � EMBED Equation.3  ���.


� This is the case for autonomous problems. For non-autonomous problems, the singular solution will be a path and the optimal solution generally involves moving to this path as quickly as possible (Conrad and Clark 1987).


� One may be tempted to write out the Kuhn-Tucker conditions in attempt to uniquely identify the switching points; however Conrad and Clark (1987 p. 87) point out that this is not a helpful approach and can actually lead to the wrong conclusions. 


� Eradication results from the assumption of a type-II predator response function and that alewives and salmon are the only species in the model.  This should be kept in mind when reading the results.  


� Given the continuous nature of the system neither alewife or salmon can not be truly eradicated, but as Hastings (2001) points out such low values can only be interpreted as extinction.  An alternative to the MRAP is to stock at the maximum rate until just after the saddle path is crossed, then stocking at the interior value until w* = 0, and then cease stocking until the system collapses.  This yields $45 million in net benefits.  Comparison of this result with that of the MRAP supports our earlier assertion that always stocking at the maximum rate to the left of the saddle path is optimal.


� Whenever a blocked interval is encountered, it is optimal to impose the extreme value of the control prior to intersecting the constraint.  In case of the w = wmax constraint this occurs instantaneously before the constraint is intersected, but the switch is significantly earlier for the w = 0 constraint. 


� This is one of four possible necessary conditions; only one must be satisfied.  Wirl (1992) emphasizes that determining sufficiency is often a numerical exercise.
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