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Abstract

The number of biological invasions increases and so are the impacts these
species cause to the environment and the economy. Because resources are
limited, the funds available for the management of biological invasions need
to be allocated in the most efficient way. Applying a cost/benefit approach
incorporating species utility, distinctiveness, robustness of species and their
interactions, this paper provides with an operational optimal method for
setting management priorities under a limited budget constraint.
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1 Introduction
The number as well as the damages caused by biological invasions are tremen-
dously increasing [Perrings et al., 2010, Vilà et al., 2011, Essl et al., 2011]. Recent
studies made an important contribution to classify their impacts [Blackburn et al.,
2014, Jeschke et al., 2014], providing an extensive list of environmental as well as
economic damages that ought to be taken into account. One of the most worrisome
feature of invasive species is their impact on biodiversity. They are an important
cause of extinction, therefore being categorized as one of the major threat to biodi-
versity [Bax et al., 2003, Clavero and Garciaberthou, 2005, McNeely, 2001, Molnar
et al., 2008, Vilà et al., 2011].

Although many biological invasions are likely to be harmful, we are left with
an uncomfortable choice to make: which species should be targeted first ? How
should we spend a limited budget to address the problem of invasion management ?
The questioning underlying this issue is a prioritization one. Budget being limited,
we unfortunately do have to set priorities in our effort to control invasions, since
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we do not have enough resources to manage all of them at the same time. Every
single undesirable species cannot be dealt with, therefore urging for the use of a
framework to help us set priorities.

Prioritization literature is mostly based on scoring approaches. Basically, scor-
ing implies giving marks to invasive species on the basis of a set of criteria, the
species with the lowest (or highest, depending on the methodology used) overall
score being considered the priority. Non exhaustively, Batianoff and Butler [2002]
scored expert opinions on species ’invasiveness’, and then compared the obtained
ranking list to impact scores [Batianoff and Butler, 2003]. Thorp and Lynch [2000]
added different criteria such as potential for spread and sociological values to rank
weeds. Kumschick and Nentwig [2010] and Kumschick et al. [2012] developed
frameworks to prioritize action against alien species according to their impacts,
incorporating experts opinions but also taking into account the diverging interests
of the various stakeholders, therefore really capturing the political issue underlying
prioritization.

If scoring is a practical approach in order to produce a ranking, these methods
were developed outside of any formal optimization framework, and this occurred
to their expense. Three important flaws can be noted: i) the costs of manage-
ment are rarely explicitly taken into account, while paradoxically we observe im-
portant heterogeneity in species management costs, ii) scoring questionnaires fail
to clearly present the objective of management policy making scores aggregation
problematic, iii) interactions among species are, at best, superficially accounted
for. This last point can be seriously misleading and for example, Zavaleta et al.
[2001] showed that eluding trophic cascades reflexions while removing an invasive
species could lead to major unexpected changes to other ecosystem components,
potentially creating unwanted secondary impacts.

The seminal papers of Solow et al. [1993] and Weitzman [1998] are two mile-
stones in the cost-benefit analysis of conservation policy. Weitzman’s approach
results in a practical methodology to prioritize conservation choices based on a
rigorous optimization model. The idea is for each species, to assess benefit/cost
ratios of conservation, that can next be ranked in order to set priorities. Vari-
ous efforts to optimise conservation of species have developed following this work.
Some of these have led to changes in allocation of conservation funding Joseph et al.
[2008], McCarthy et al. [2008], and variants have been used to allocate surveillance
effort over space [Hauser and McCarthy, 2009].1 Such a methodology provides us
with a formal framework to think about prioritization and could be applied to
the management of invasions. As for conservation policy, biological invasion man-
agement aims at maximizing biodiversity and ecosystem services and it is to be
performed in a cost-efficient way. A particularly problematic flow with regard to

1Other applications are quoted in Eppink and van der Bergh [2007].
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Weitzman’s approach is that it fails to account for species interrelations. Disrup-
tions from invasions are mainly due to the dynamics of spread and its negative
impact on native species. Interrelation network and the dynamics of reproduction
is at the cornerstone of the optimization framework. Courtois et al. [2014] revisited
Weitzman’s optimization problem and extended his model in order to incorporate
species interactions. The idea is to model species survival probability as a function
of survival probabilities of other species. We use a similar approach in this paper
and our principal output is to forward a general ranking formula that could be
used as a rule of thumb for deciding biological invasion priorities under a limited
budget constraint and accounting for species interrelations.

The sketch of the paper proceeds as follow. In section 2, we consider a simple
stylized model of prioritization with two native and two invasive species. We define
the optimization framework assuming specific class of utility and diversity func-
tions and analyse the budget allocation choice of a manager aiming at minimize
the disruptions due to biological invasions. We proceed in section 3 with a gener-
alization of this optimization framework by considering any number of species and
any class of utility and diversity functions. Section 4 concludes on the use of the
resulting prioritization criterion for applications.

2 A stylized model
Consider an hypothetical ecosystem composed of four interacting species i =
{1, 2, 3, 4}. Among these species, two are invasive species we denote with subscript
k, k = {1, 2}, and two are native species we denote with subscript l, l = {3, 4}. We
distinguish two types of impact of invasive species to the ecosystem: ecological im-
pacts among which impacts to the native ecosystem through species interactions,
resources competition, etc, and economic impact, like eutrophication or obstruc-
tion of canalizations.2 Impacts although often negative can be positive and for
example an invasive species may well affect positively some stakeholders exploit-
ing it (e.g. fish, crayfish) as it can affect positively several native species of the
ecosystem for example through predation or mutualism.

Imagine that a manager in charge of this ecosystem is to efficiently limit the
negative impacts due to invasive species. Given his limited resources, he has to
efficiently allocate his budget in order to minimize net losses given the relative

2e.g. the brown tree snake (Boiga irregularis) introduced in the snake-free Guam forest after
World War II because of military equipment being moved onto Guam [Fritts and Rodda, 1995,
Pimentel et al., 2005] participated in the extinction of 10 native forest birds [Rodda et al.,
1997]. One of the many examples of disutility produced by an invasive species is the case of
Dreissena polymorpha, also known as the European zebra mussels, invading and cloging water
pipes, filtration systems, and electric generating plants; it is estimated that they cause 1 billion
USD/year in damages and associated control costs per year [Vilà et al., 2011].
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marginal costs of controlling species k. This translates into a maximization prob-
lem of an objective function under a monetary constraint.

Because impacts from invasive species are twofold, the objective function of this
manager is made of two components. The first is an ecological component. The
manager wants the expected diversity of the ecosystem to be as high as possible.
In our two native species ecosystem it means that given species dissimilarity and
survival probabilities of these natives, the manager aims at controlling the negative
impact of invasives on expected diversity. We denote this function W ({Pl}4l=3),
with Pl the survival probability of species l. We assume that Pl ∈ [0, 1] is an index
value, with Pl = 0 meaning extinction and Pl = 1 meaning profusion of species l.
We consider purposefully that invasive species do not participate to the diversity
of this ecosystem. They contribute to diversity but of their own native system.

Several competing expected diversity function can be considered and choosing
one functional form versus another is an important choice as it reflects a philoso-
phy of conservation.3 Two expected diversity functions are particularly relevant for
the current paper, Rao’s quadratic entropy [Rao, 1986] and Weitzman’ expected
diversity [Weitzman, 1992, 1998]. In the current section, we consider Weitzman
[1998] expected diversity function, a generalization of our approach to any func-
tional form being proposed in next section. Weitzman considered that each species
could be seen as a library containing a certain number of books. The value of a set
of libraries is made of the collection of different books available, but also of the
different libraries themselves because they can be considered has having an intrin-
sic value (for instance, the Trinity College Library in Dublin would be considered
a wonder even if the book of Kells were not there). Biologically, libraries being
species would mean that books would be genes, or phenotypic characteristics, or
even something else. To keep it simple, we consider diversity in terms of differ-
ent genes, like Weitzman did. Assume that species 3 contains E3 genes and that
species 4 contains E4 genes. Furthermore, although the model could accommodate
for gene sharing, we further assume in this stylized model that species 1 and 2 do
not have any gene in common. The expected diversity function reads as:

W ({Pl}4l=3) = P3P4(E3 + E4) + P3(1− P4)E3

+ (1− P3)P4E4 + (1− P3)(1− P4)0

= E3P3 + E4P4 =
4∑
l=3

El ∗ Pl
(1)

The second component of the objective function is the utility derived from each
species i. Utility of both native and invasive species may well range from positive

3Interested readers may refer to Courtois et al. [2015]
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to negative values. We assume that the marginal utility of each species is constant
at rate ui and write:

(2) U({Pi}4i=1) =
4∑
i=1

ui ∗ Pi

Now that the objective of the manager is defined, let us focus on his con-
straints. First the manager is to account for species interrelations. We consider
as in Courtois et al. [2014] that each species i has an autonomous surviving prob-
ability qi which is the survival probability of species i in an ecosystem absent of
species interactions and, of manager. Because of species interaction, each species i
surviving probability depends also on all the other species surviving probabilities,
through interrelation parameters ri,l 6=i. Finally, the manager can decide to impact
the surviving probabilities of the invasive species present in the ecosystem. His
managing effort on species k is denoted xk. The resulting survival probabilities of
species i in our stylized two-natives two-invasive species ecosystem read as:

(3)
{
Pl = ql +

∑
i 6=l rli Pi , ql ∈ [0, 1[

Pk = qk − xk +
∑

i 6=k rki Pi , qk ∈ [0, 1[ , xk ∈ [0, xk] .

Second, the manager is to account for complying with his budget which is
assumed to be limited. Let ck be the marginal cost of the effort to control invasive
species k. Denote by B the overall budget he can exhaust, an additional constraint
is the budget constraint:

(4)
∑
k

ck ∗ xk ≤ B ,

We now can establish the manager’s optimization problem in terms of managing
efforts xk:

max
{xk}2k=1∈ ×2

k=1[0,xk]

4∑
l=3

El ∗ Pl +
4∑
i=1

ui ∗ Pi

subject to (3) and (4).

(5)

Solving the system of survival probabilities described by (3), we obtain a system
of equations that links survival probability Pi to control effort values xk:

(6)


P1 = α1

δ
x1 + θ1

δ
x2 + γ1

δ

P2 = α2

δ
x1 + θ2

δ
x2 + γ2

δ

P3 = α3

δ′
x1 + θ3

δ′
x2 + γ3

δ′

P4 = α4

δ′
x1 + θ4

δ′
x2 + γ4

δ′
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with δ′ = δ(1−r12r21) and δ, αi, θi are coefficient that only depend on the matrix of
species interdependence rih, γi coefficients that depend on species interdependences
and on autonomous surviving probabilities qi.

Plugging (6) in the objective function (5), the maximization shrinks to the
trivial problem:

max
x1,x2

ax1 + bx2 + cste

s.t c1x1 + c2x2 ≤ B .
(7)

where a and b are coefficients that only depend on the matrix of species inter-
dependence rih, the vector qi, the distinctiveness parameters El and the marginal
utility ui.

As the objective function is linear in efforts, the solution of the maximization
program (7) is extreme, i.e. in the usual case where a > 0 and b > 0, effort
is devoted in priority to the control of a single invasive species and if resources
are more than sufficient to fulfill the control of this species, to the other. For
simplicity and without loss of generality we consider budget B is limited enough
to be completely exhausted with the control of a single species. We have then
three extreme solutions, (0, 0), (x1, 0) and (0, x2), with x1 and x2 standing for
the maximal admissible ranges of efforts determined by economical and biological
constraints.

Proposition 1 In our stylized model, optimal management plan proceeds as fol-
lows:

• if a ≤ 0 and b ≤ 0, no effort should be made to control the invasions because
effort is not desirable. The solution to the maximization program is (0, 0) ;

• if a ≤ 0 and b > 0, effort is granted to species 2. The solution to the maxi-
mization program is (0, x2) ;

• if a > 0 and b ≤ 0, effort is granted to species 1. The solution to the maxi-
mization program is (x1, 0) ;

• if a > 0 and b > 0, effort is granted to species 2 when c1
c2
> a

b
and to species 1

else. The solution to the maximization programme is either (x1, 0) or (0, x2) .
In the very specific case where c1

c2
= a

b
any combination of efforts is applicable.

Coefficients a and b depend on species interactions parameters ri,h 6=i, the vector
qi, the distinctiveness parameters El and the marginal utility ui. Key message of
the proposition is that when both invasive species disrupts the ecosystem, effort
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is made toward the most cost-efficient plan. The idea is thus to limit ecosystem
disruption at the lower cost.
This stylized model is useful in that it provides us with a formal framework to think
about the optimal management of biological invasions. However, it is not sufficient
as such to make any clear-cut generalization about budget allocation and priorities
in a more complex world. First, a model with more species is to be considered
as more species translates in more interrelations and could make the problem
untractable. Second, simple linear expected diversity and utility functions are
restrictive assumptions. Other diversity functions among which the Rao general
entropy concept [Rao, 1986], the Allan diversity function (Allan 1993) or even
Weitzman’s expected diversity with species sharing common genes, exhibit local
convexities. Utility functions admit also often concavities or convexities and our
prioritization model is to deal with any of these types of situations. Third, more
than an optimization framework, we wish to develop a an easy-to-use tool that a
manager could use in any socio-ecosystem configuration. In the following section
we address these three points and provide with a criterion for a manager to set
priorities in any socio-ecosystem configuration.

3 A prioritization criterion
Consider now an ecosystem made of N = J1;nK distinct species, k of them being
invasive and n−k being native. Invasive species are indexed ∀i ∈ J1; kK and native
species are indexed ∀i ∈ Jk + 1, nK. Again, we ask how a manager should allocate
his budget in order to limit the negative impacts associated with invasions.

The problem is more general as we consider many species and therefore many
more interactions. We also wish the model to apply with several formulations
of expected diversity functions. Weitzman [1998] diversity concept is indeed one
among many others and although the concept is appropriate for various manage-
ment projects, it is not for others. In order for our results to remain as general as
possible, we consider the expected diversity function W and the utility function
U pertain to the class of C2 functions, i.e whose first and second order derivative
both exist and are continuous.

As in the stylized model, we consider a manager is to choose a vector of effort
X that maximizes an objective function, given species interdependence, and under
the constraint of resources. We assume:

(8) Pi = qi − xi +
∑
h6=i

rih Ph , qi ∈ [0, 1[ , xi ∈ [0, xi] .

with Pi ∈ Πi =
[
Πi,Πi

]
v [0, 1] , ∀i , ∀ xi ∈ [0, xi] , xi the admissible
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range of control, and qi the probability of survival of species i in the absence of
control and without species interactions. Note that for native species, we consider
xi = 0, meaning that effort of control is only toward invasive species. As previously
considered, the budget constraint is linear in efforts and we have:

(9)
k∑
i=1

ci ∗ xi ≤ B .

where B is the total budget to be allocated to invasive species control and ci
is the cost per unit of effort to control species i.

The maximization programme of the manager is:

max
{xi}ki=1∈ ×k

i=1[0,xi]
W
(
{Pi}ni=k+1

)
+ U ({Pi}ni=1)

subject to (8) and (9).
(10)

Remark that we follow the exact same assumptions than in the stylized model
and consider that only native species contribute to the diversity of their ecosystem
while utility of all species are considered in the objective. It goes without saying
that the utility of a species might be negative.

It is convenient subsequently to work with matrix expressions, written in bold
characters. For any matrix M, let M> denote its transpose. Further, In is the
(n×n) identity matrix, ιn is the n dimensional column vector whose elements are
all 1.

We define:

Q ≡



q1
q2
...

qn


, R ≡



0 r12 ... r1n
r21 0 ... r2n

... ...
. . . ...

rn1 rn2 ... 0


, P ≡


P1

P2
...
Pn

 , c ≡



c1
c2
...
ck
0
...
0



P ≡


P 1

P 2
...
P n

 , P ≡


P 1

P 2
...
P n

 , X ≡



x1
x2
...
xk
0
...
0


, X ≡



x1
x2
...
xk
0
...
0


.
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In matrix form, the system (8) reads as:

(11) P = Q−X + R ∗P.

Under the weak assumption that matrix In −R is invertible , the system (11)
is solvable and the solution of this system reads as:

(12) P = Λ∗ (Q−X) ,

where Λ ≡ [In −R]−1 .

Let P (X) ≡ Λ∗ (Q−X) refer to the affine mapping from efforts to probabili-
ties.

We plug (12) into (10) to get rid of probabilities, and express our management
of invasive species only in terms of efforts. Define the two composite functions,
which here are mappings from the values taken by function P (X) to the set of
real numbers:

W ◦ P (X) ≡ W (P (X)) ,

U ◦ P (X) ≡ U (P (X)) .

To each vector X corresponds a unique vector P = P (X). Therefore the in-
vasive species management problem becomes the constrained maximization of a
function of management efforts X:

(13) max
X

W ◦ P (X) + U ◦ P (X) ,

subject to:

c> ∗X ≤ B ,(14)
0 ∗ ιn 5 X 5 X .(15)

Finding the vector X solution to the optimization problem above is strictly
equivalent to finding the optimal set of management efforts xj,∀j ∈ J1; kK. Should
the budget be dispersed to deal with many different invasive species or should it
be concentrated on a subset of few invasive species ? This second option could be
seen as an extreme policy as in our stylized model where budget was allocated pri-
oritarily to one species. Given the budget constraint is assumed linear, answering
this question translates in discussing the gradient of the objective function, that
is the gradient of functions W and U .
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3.0.1 Case 1. Objective is not concave

This is a well know result that the maximization under a linear constraint of
a function that is non-negative semi definitive, i.e. which is not concave, ad-
mits an extreme solution. Considering the case where W (P) + U(P) is non-
negative semi definite, we can easily see that because P (X) is an affine mapping,
W ◦ P (X) + U ◦ P (X) is also non-negative semi definite.
When

∑n
i=1 Pi 6= 1, most diversity function W (P) pertains to the class of non-

negative semi definite functions (proofs upon request for Rao and Weitzman di-
versity functions). We can then easily prove that W (P) + U(P) is non-negative
semi definite when U(P) is positive semi-definite, i.e. linear and convex functional
form. Else, there exists conditions on the gradient of U(P) for W (P) + U(P) to
be non-negative semi-definite.

We deduce that in a large majority of cases, the objective of the manager
pertains to this class of function and the solution to the maximization problem
lies on the boundary of the efforts set. The boundary involves corners, e.g. xi = 0
or xi = xi, and possibly a segment between two corners, therefore with xi ∈ [0, xi]
for at most one species.

As the objective function of the manager is usually not an affine mapping as
it is the case in our stylized model, finding the solution to this problem is not
trivial. Following [Weitzman, 1998] and [Courtois et al., 2014], we resort to a
linear approximation of the objective function in order to find this solution.4

Let us denote:

Di ≡
∂W

∂Pi

∣∣∣∣
P=P

, Ui ≡
∂U

∂Pi

∣∣∣∣
P=P

,

and define the two matrices:

A ≡


D1 + U1

D2 + U2
...

Dn + Un

 , Υ ≡ A> ∗Λ.

The linearized problem in matrix form turns out to be:

(16) max
X

Υ ∗X + constant terms,

subject to (14) and (15).
4We suggest the interested reader to refer to [Courtois et al., 2014] for a discussion over the

legitimacy of this approximation in this class of problems.
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The matrix Λ = [In −R]−1 permits the transformation of the information
about ecological interactions conveyed by matrix R into operational data. The
computation of the matrix Λ is easily made and if Λij denotes a typical element
of Λ, then Υ is a n-dimensional line vector of the type:

Υ = [α1 , α2 , ..., αn] ,

where

αi ≡
n∑
h=1

(Dh + Uh) Λhi .

We can now define the "benefit"-cost ratios Ri ≡ αi/ci , or with explicit refer-
ence to relevant information:

(17) R
i ≡ 1

ci

n∑
h=1

(Dh + Uh) Λhi , i = 1, ..., k.

Assume invasive species i, i ∈ J1; kK is assigned with the highest value of Ri.
Then, if this value is superior to zero, species i should be targeted first and control
efforts should focus on this species until efforts reach a maximum, i.e until xi = xi.
Then, if cixi < B, the invasive species with the second highest Ri>0 should be
the next target and this iterative process would go on until budget B is fully
exhausted.

As we can appreciate, the Ri score of invasive species i does not depend merely
on its own impacts but actually on the overall impacts generated by this species
on other species,

∑n
h=1 (Dh + Uh) Λhi, via ecological interactions. Therefore, a

species with a strong disutility can be overridden by another, endowed with a
lower disutility, but whose importance is enhanced because of its ecological role
on other species.

Following [Courtois et al., 2014], we are able to make a ranking criterion opera-
tional to decide whether or not to spend money on the management of an invasive
species:

Proposition 2 In our optimization problem with ecological interactions, defined
by (16), (14) and (15), there exists a cutoff value R∗ such that:

• if Ri
> R

∗
=⇒ xi = xi , (species i is granted full management),

• if Ri
< R

∗
=⇒ xi = 0 , (species i is granted zero management).

This myopic ranking criterion is a transparent measure to set management
priorities and decide whether or not to allocate part of a budget toward the man-
agement of an invasive species. Note that the criterion being the result of an
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approximation of the objective, there exists an induced error that can be esti-
mated on the basis of the gradient of the objective. The biggest the curvature of
the function, the higher the error.5

3.0.2 Case 2. Objective is concave

If a manager conveys informations on species interdependencies, species utilities,
species contribution to expected diversity and cost of control of invasive species,
the criterion proposed in proposition (2) is a simple rule for allocating budget.
However, this rule can only be used as such if the objective of the manager is
non-negative semi definite, that is if the objective is not concave. Unfortunately,
although many classes of biological invasion management problems are not con-
cave, some are. In particular, the utility function from controlling harmful invasive
species may be negative semi definite and there exists conditions for the objective
function W ◦ P (X) + U ◦ P (X) to be negative semi definite. In such a case, this
is a well known result that the maximisation under a linear constraint of a neg-
ative semi definite function admits an interior solution, that is an optimal effort
allocation vector.

Gradient method is useful in estimating this optimal effort vector. Linearizing
the objective function and minimizing the distance between the gradient of the
objective and of the constraint allows for gradually approximate the value of this
optimal policy. However, we aim here at defining a simple rule of thumb that
can be used by a manager and this approach is inappropriate in that it is rather
complex to handle. Albeit not fully satisfying, another solution is for the manager
to use an iterative algorithm in order to allocate his budget using myopic criterion
presented in (2).
Let divide budget B in s shares, such that b = B/s. If s is sufficiently big then b
is small allowing for considering that allocation of budget b to the maximization
problem lies on the boundary of the efforts set. This boundary involves corners,
e.g. xi = 0 or xi = xi, and possibly a segment between two corners, therefore
with xi ∈ [0, xi] for at most one species. The following iterative procedure gives
the interior solution of our maximisation problem using the simple myopic rule
previoulsy defined:

Algorithm 3 In our optimization problem with ecological interactions, the follow-
ing iterative procedure is an approximation of the interior solution:

1. Compute the increased proportion ∆Ph for any invasive species h given b is
spent on the control of h only

5We suggest interested readers to refer to [Courtois et al., 2014] for an evaluation of this error.
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2. Compute Rh score for all invasive species h using ranking criterion formula
(17)

3. Allocate the share of budget b to the control of the invasive species with the
highest score

4. Update the proportion Pi given this allocation

5. Allocate the next share, until all shares are allocated.

This algorithm is technically demanding as many computations are made nec-
essary in order to approximate the solution of our maximization problem. It
constitutes however an easy-to-use tool in order to set priorities in invasive species
management.

4 Conclusion
Echoeing the work of Witting and Loeschcke [1995] whom stated that the opti-
mization of biodiversity conservation should be a minimization of the future loss
of biodiversity, we demonstrated in this paper that an optimization framework is
relevant to tackle the issue of prioritizing invasive species management projects.
Such a framework is able to take into account pragmatic limitations, such as a
budget constraint, as well as more unusual constraints such as ecological ones.
This model is to our knowledge the first prioritization tool that effectively take
into account relative management costs and impact cascades in choosing which
invasions to control in priority.

A key output of the paper is the design of a myopic rule a non expert manager
could use in order to efficiently allocate his budget to limit ecosystem disruptions.
Recall that similar rules were used in order to set conservation priorities in New
Zealand [Joseph et al., 2008]. An straightforward continuation of the present work
is to provide with an application of our decision criterion.

Several additional assumptions are required in order to perform this applica-
tion. First, an appropriate diversity function concept is to be picked. Among the
several available concepts in the literature, Weitzman expected diversity and Rao
quadratic entropy are a priori the best candidates but correspond to two distinct
philosophy of diversity that needs to be further discussed. Second, the measure
of species distinctiveness is to be elicited. Genetic dissimilarity might not be the
best information to measure diversity. Third, our model can either work with Pi
standing for the survival probability of species i or for Pi standing for the relative
abundance of species i within the ecosystem. According to the species selected in
the application, one variable or the other is to be used but if the second option is
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selected the model needs to be modified at the margin in order to incorporate the
additional constraint

∑n
i=1 Pi = 1. Finally, the crux of the framework is to account

for species interdependences. The robustness of the ranking rule is fully dependent
on the quality of the inderdependence informations (i.e. Rih matrix). Generally,
a specific focus is to be put on availability of the data required for making use of
this ranking criterion.
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