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Abstract

The literature on ‘fish wars', where non-cooperative exploitation one, or several interacting, fish
stock(s) is well established by now, but age and stage structured models do not seem to have been
handled within this literature. In this paper we study a game where two fishing fleets compete for
the same fish stock, which is divided into several age categories. The situation modelled here may
be representative for many transnational fisheries, such as the North Atlantic cod fishery. The
outcome of the game is compared to the optimal cooperative solution, regarding both the steady
state solution and the dynamic approach path. We analyze the game under different assumptions
with respect to gear selectivity, with respect to alternative model specifications, and also with
respect to the information available to each fleet, both about the underlying ecological interaction
and the actions of the other agent. The results differ in several respects from what is found in

biomass models, and are supported by a numerical example
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1.Introduction

Fisheries are frequently the source international conflicts and often characterized by suboptimal
resource management. The unwillingness of fish stocks to contain themselves within national
borders leads to a typical commons problem present in almost all marine fisheries to a larger or
smaller extent. Even after the post war emergence of exclusive economic zones, problems still
remain as regards defining a fish stock within the jurisdiction of one country alone. Fish stocks
straddle across vast distances, across international borders, and are often present both in the high
seas and within the exclusive economic zones of one or more countries at the same time. In
addition, fish stocks are often highly migratory, travelling along coastlines and up and down rivers,
spending much of their lifetime outside of the breeding grounds, thus giving rise to sequential
fishing where different agents take turns in exploiting the stock. A particular aspect of this situation
is that different age categories of the same stock frequently reside within the economic zones of
different countries. In the latter case, different fleets do not strictly speaking aim for the same fish,
but they nevertheless affect each other through the biological interaction. In fact, the same problem
may occur between fleets that are distinguished not by nationality, but simply by utilizing different
gear, thus aiming for different age categories of the same stock. This situation, which is not
adequately handled within the existing literature on biomass models and sequential fishing, is
actually quite common. Examples include the Arcto-Norwegian cod, that feeds in the Barents
region, thus subject to harvest by trawlers, but where the mature fish migrates towards the
Norwegian cost to spawn, there being exploited by small line fishing vessels (Suhaila, 1997,
Armstrong, 1991). Other examples in the same vain include the Southern bluefin tuna that spends
its immature phase along the coast of Australia, but then migrates to the high seas in the Indian
Ocean. Similar descriptions apply to the Canada halibut and the North sea herring. Anadromous
species such as salmon spawns in rivers, being harvested by coastal vessels and recreational
fishermen, but lives most of its life in the open sea. These are some of the world’s most valuable
fisheries.

The literature on 'fish wars', where agents engage in non-cooperative games of exploiting a fish
stock, has grown large since the seminal contributions of Munro (1979) and Levhari and Mirman

(1980). A good survey of this literature is provided by Bailey et.al. (2009). For our purpose, the



literature on ‘sequential’ fishing, where agents alternate in exploiting a common stock, is of
particular relevance. This literature is meant to address situations such as the ones exemplified
above, where one stock migrates between several economic zones. Hannesson (1995) studies the
possibility for self-enforcing agreements in such a sequential fishery, and McKelvey (1997)
expands the framework to consider the possibility of side payments. Laukkanen (2001) shows that
the effectiveness of trigger strategies to maintain a cooperative equilibrium is undermined when
stock recruitment is subject to stochastic shocks. However, these studies all employ biomass
models, implicitly assuming that the fish caught in one area is identical to the fish caught in
another. Cohort models, on the other hand, are still scarce in the economic literature, as noted by
Skonhoft et al, (2012). The seminal book on bioeconomic modeling by Clark (1976) treats the
Beverton-Holt model to some extent, but puts main emphasis on biomass models. Seminal
contributions by Reed (1980), Charles and Reed (1985) and Getz and Height (1985) subsequently
enhanced the economic understanding of the exploitation of age structured stocks. In a more recent
contribution, Tahvonen (2009) presents a thorough study of the optimal harvesting of age
structured fish stocks, under the assumption of non-selective gear. But in general biomass models
are much more used in theoretical work. This is unfortunate, as age structured models arguably
give a more realistic picture of actual fish stock dynamics, as well as a more transparent view of the
information available at any point in time and the timing of decisions. Moreover, they lend
themselves easily to numerical applications. Very few studies address age structured stocks in a
game theoretic setting, but there are two notable exceptions that both study the Arcto Norwegian
cod mainly through numerical analysis. Sumaila (1997) studies the difference inprofitabiliy
between a trawler fleet and a coastal fleet, and shows e.g. that the most profitable fleet in a
cooperative solution may become the least profitable fleet in a non-cooperative situation where the
trawler fleet utilizes its strategic advantage. Diekert et. al. (2010) assume symmetric players, i.e.
two trawler fleets, that compete through mesh size and not effort. They show that a
non-cooperative solution implies ‘fishing down the size categories’, and that the outcome of a
non-cooperative open loop equilibrium is both far from the cooperative optimum and close to the

status quo situation in terms of profit and stock size.

In this paper we study a situation not associated with any particular fishery, but where different age

categories of a fish stock reside within two different economic zones. The exploitation of the stock



is then modeled as a game between two countries, or fleets, that aim for different cohorts, but
nevertheless affect each other’s profitability through the biological interaction. The model can also
be understood as a game between fleets that utilize different gear, and hence aim for different age
categories of the same stock. First overall optimality is addressed, which can under certain
conditions also be interpreted as a non-cooperative equilibrium with side payments. Second, we
discuss the situation where both fleets are unable to organize and hence exhibit myopic behavior,
and conditions for one of the fleets to be excluded from the fishery in this case. Third, The situation
where one fleet is uncoordinated and the other behaves as a single entity is studied. Finally, we
analyze the game between two fleets that are perfectly organized internally. It is shown that,
depending on parameter values, both coexistence and exclusion is possible in all different
scenarios. Also, it is not generally clear whether it pays to organize, as lack of organization acts as
a credible promise of myopic behavior. Typically, the fleet that targets the old mature stock is most
profitable and should take the largest quota in a cooperative situation. Nevertheless, without
cooperation the fleet catching the young stock may exploit its strategic advantage and end up with
the highest profit. It appears as if the asymmetric structure of the game itself is aggravating the
commons problem. We consider also the situation where both fleets exhibit complete and find that
the impact of non-cooperation is less severe in this case. Hence, gear selectivity is a double-edged
sword when strategic interaction is taken into account. The results are subsequently illustrated with

a numerical example.

The paper is organized as follows. In the next section 2, a three stage population model is
formulated. In section 3 we analyze the optimal harvest regime under cooperation Section 4
presents the non-cooperative solution, both with a full Nash-Cournout solution and with myopic

adjustment for one or both fleets. In section 5 some numerical examples are provided.

2. Population model and harvest
2.1 Population model
For analytical tractability, we use a population model consisting of only three cohorts: juveniles

X,.» Young mature fish X, and old mature fish X, . Young and old mature fish are both

harvestable, while the juveniles are not subject to fishing mortality. While recruitment is

endogenous and density dependent, natural mortality is assumed fixed and density independent for

4



all three age classes. In the single period of one year, three events take place in the following order;

first, recruitment and spawning, then fishing and finally natural mortality.
The number of juveniles is governed by the recruitment function

(1) XO,t = R(Xl,tXZ,t) ,

where R(-) is characterized by R(0,0)=0 and 0R/0X,, =R,'>0, together with R "<0(i=12
). As higher fertility of the old than the young mature is assumed, we also have R,'>R,". The

number of young mature fish follows next as

2) X S, X

141 — S0/Mot!

where s, is the fixed natural survival rate. Finally, the number of old mature fish is described by

(3) X2,t+1 = 51(1_ fl,t) X1,t +5, (1_ fz,t)xz,t J

where f and f, are the fishing mortalities, or harvest rate, of the young and old mature stage,

respectively, while s, and s, are the natural survival rates. When combining Egs. (1) and (2) we

have
(4) xl,t+1 = SOR(xl,t’ Xz,t ) :

Egs. (3) and (4) represent a reduced form model in two age-classes, where both equations are first

order difference equations. The population equilibrium for fixed fishing mortalities f;, = f.is

defined by X, =X;, =X, (i=12) such that Egs. (3) holds as

3) X,=s50@0-f)X, +s,d-1,)X,



and Eq. (4) as

4) XlzsoR(Xl,Xz).

(37) is notified as the spawning constraint while (4°) is the recruitment constraint. An interior

equilibrium holds for 0< f, <1only; that is, not all the young mature fish can be harvested. Thus,
with f,=1 and 0< f, <1 we find X, =0together with X, > 0. An interior equilibrium is shown

in Figure 1. Higher fishing mortalities will shift up the spawning constraint (3”) and hence lead to
smaller stocks, while higher natural survival rates work in the opposite direction. The ratio of old to
young mature fish is given by the slope of the spawning constraint,
X, I X, =s,(a-f)/(@-s,(1—f,)). Therefore, neither the scaling nor the shape parameters in the
recruitment function influence the equilibrium fish ratio. It is seen that lower fishing mortalities
increases the proportion of old mature fish. The reason why lower f, increases the proportion of

X, is that the increased population of the young mature age class spills over to an even larger

increase in the old mature population.
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Figure 1. Biological equilibrium with fixed fishing mortalities.



2.2 Harvest

The fish stock is exploited by two fishing fleets, and each fleet is targeting a particular age class of
the fish. As explained in the introduction, this harvesting scenario fits reality in many instances,
either because of differences in gear selection or because the two age classes reside in different
economic zones. To a certain extent, the fleets might be able to influence their catch composition.
For example, the mesh size may be increased, or other gears may be adopted to leave the younger
and smaller fish less exploited (see, e.g., Beverton and Holt 1957 and Clark 1990, and the recent
Singh and Weninger 2009). However, in most instances the catches are composed of species from
different cohorts and there is hence ‘bycatch’. By convention, it is assumed that fleet one targets
the young mature fish (stock one) while agent two targets the old mature fish (stock two). Even
though our results do not depend on the specific formulation of the production functions, we

choose a specific function form, the so-called Spence function, to ease the analytical exposition:
(B)  H, =X, (1-e%), i=12.

Where H;, is the harvest of fleet i at time t, E is the fishing effort, interpreted as, e.g., the

number of standardized fishing vessels, and ¢, is a productivity, or ‘cathchability’, parameter

(1/effort).

The bycatch is described as
6 B, =X, (1-e"%),

such that H, describes the catch of the targeted stock and B, the bycatch. The catchability

coefficients g and ¢, (i=12) thus determine the intended and unintended catch per unit of

effort, respectively.



With the total mortality rate defined as f;, =(H,, / X, + B,/ X; ) =h , +b,, the mature age class

S

growth Eq. (3) becomes:
(7) X2+1,t == (e*ChEu + e*quz,t _1) Xl,t +s, (e*%Ez,t + e*fhEm _1) x2,t ’
which with no bycatch reduces to:

(8) Xoyr = sleiqlEl‘t X+ Sz(:quEZ’t KXo

While e js interpreted as the escapement rate of the stock after harvesting, (1—e *™*)
represents the fishing mortality, or harvest rate. Notice that with the Spence harvesting function,
the fishing mortalities can never reach one for a finite amount of effort, and the extinction of the
population is hence not possible. In the following two sections we assume perfect selectivity and
no bycatch, while non-selectivity and bycatch is treated in section 5.

3. Exploitation I: Cooperation

3.1 The optimal program

We start by looking at the cooperative solution where the maximum present-value profit of both
fleets is determined jointly. As we wish to focus on biological interaction, we assume that the fleets
do not interfere with each other through market mechanisms and hence assume fixed prices. With

p,and p,as the fish prices (Euro/fish), assumed to be fixed over time and not influenced by the

size of the catch, and c, as the unit effort cost (Euro/effort) (i=12), also assumed to be fixed,
7T, = P Xy, (1—e"’1E1")—clELt + P, X, (1—e"‘2E2")—c2 E,, describes the current total profit with

perfect selectivity and no bycatch. The constraints of this problem are the biological equations (4)

and (8). In addition, the initial stock sizes, X, ;, are assumed known.

The lagrangian of this present-value maximizing problem may be written as



L= gpt{ p. X, (1-e "5 )—cE + p, X, (1—e ™ )—c, E,,

—Pha I:Xl,t+1 —5R ( X1 Xa ):| — Pl |:X2,t+l - 51(:37(]1&t Xy — SzeiqZEZ't Xo :I}

where 4, >0and z, > Oare the shadow prices of the biological constraints (4) and (8), respectively,
and p e[O,l] is a discount factor. Following the Kuhn-Tucker theorem the first order necessary

conditions (with X;, >0, i=12) are:

(9)  OL/GE, = pg X, & " —C — pr4 S0, X, & " <0; B, 20, t=012,...,
(10)  6L/GE,, = p,0,X,,& % —C, — p14,,5, X, ** <0, E, 20, t=012,..,
(11)  oL/oX,, = py(1-e % )= 4 + pA. SR + pr s *™ =0, t=123,...,
and

(12) AL/ X, = p, (1-e " )+ pA SR, '~ 14 + prh 45,6 " =0, t=1,2,3,....

The interpretation of the control conditions (9) and (10) are straightforward. Condition (9)
indicates that the fishing effort of fleet 1 should take place up to the point where the marginal profit

is equal to, or below, the economically, o, and biologically, s,, discounted marginal biomass loss

of the immature stage, as evaluated by the shadow price of the biological constraint (8). Condition

(10) is analogous for the old mature stock. Egs. (11) and (12) steer the shadow price values.
Rewriting Eq. (11) as 4 = p, (1—e‘°“E“ )+ PSR+ oy .58 " it is seen that the number of
young mature fish should be maintained such that its shadow price equalizes the marginal harvest
value plus its growth contribution to recruitment and the old mature stage, as evaluated at their

shadow prices with biological and economic discounting taking into account. Eg. (12) can be given

a similar interpretation.

Rewriting the control conditions (9) and (10) as:

©) &( X8 * -/ pg,

s X o }Spﬂm; E, 20, t=012,..
1 1t



and

X AT /
(10%) &( . i J <p B 20, 1=012,...,

—0z2Ez¢
2 Xz,te

reveals that the survival rates s;,i=12 and the economic parameters p,, g, and c; alone

determine the optimal harvesting priority. Fertility plays no direct role. Assuming an interior
solution, the optimality condition for each stock can be rewritten in terms of the optimal

escapement xiyte’qix"‘ as a function of the economic parameters and the shadow price of stock 2 as

(1) X, e =Gl 1o

Pi — PSik
With ps,,, =0, that is, when either the discount factor, the survival rate of stock i or the
shadow value of stock 2 is zero, myopic adjustment ensues, where stock i is harvested down to its

zero marginal profit level c,/ p,g; each year.

Therefore, although the recruitment function certainly impacts on the optimal harvest of the two
stocks, its properties are not observed directly in the optimal harvesting policy. This result is
similar to what is obtained by Reed (1980) in a model where the maximum sustainable yield
(MSY) is maximized and no economic parameters are included. Altogether, when the possibility of
no harvesting at all is ignored, the optimal harvest policy comprises the following three

possibilities; Case i) withE;, >0and E,, >0, Case ii) withE,; >0and E,, =0and Case iii) with
E,.=0andE,, >0. Case i) is the interior solution and is in contrast to Reed (1980) and Skonhoft

et al. (2012) a possible option in our model because the lagrangian is jointly concave in the control

and state variables.

Combining (9) and (10’) gives the condition

Py X1,te_qlELI —C /P _b Xz,te_qZEm —C,/ p,G,
Sl the*fhEm sz xz]te*CIzEza !

which states that share of the escapement of each stock above its zero marginal profit level c, / p,q;
is equal across the two stocks, when weighted by the price-to-survival ratio p, /s,. The stock that

has the highest price-to-survival ratio will have the smallest escapement share above its zero

10



marginal profit level, and can thus be said to be harvested more aggressively. With similar survival
rates, and when the market price is higher for stock 2, stock 2 should be harvested more intensively
than stock 1, a result in accordance with previous studies (i.e. Diekert et. al., 2010). In the special

case where ¢, / p,g =¢,/ p,q,, the escapement in terms of tonnes is simply higher for the stock

with the lower price-to-survival ratio. Also note that, while negative marginal profit will not be
optimal for any of the two stocks, as they are controlled separately, zero marginal profit may be
optimal under myopic adjustment but then for both stocks at the same time. It is thus not optimal to
harvest only one of the two stocks myopically, while leaving the other stock at a level where

marginal profit is positive. Rewriting this condition as

1 C, 1 C,
< pl o —0hEq e p2 a —02E; ¢
Sy o X.e S, qzxz,te '

allows the interpretation that the survival adjusted marginal profit at the end of the harvesting

period is equal for the two stocks.

3.2 Steady state analysis
In a steady state the biological constraints read (4°), and

(37)  X,=se % X, +5,6%% X,,

such that the escapement rates e %% | or fishing mortalities f, = (1—e %% ) (i =1,2), are constant

through time. As already explained, the slope of the spawning constraint indicates the fishing
pressure. It is difficult to draw general conclusions about the differences of the slope of the
spawning constraint with our harvest options Case i) — Case iii). Therefore, harvest option Case i)

can be either more aggressive or less aggressive than Case ii), and so on. However, rewriting the

Sle—fh =]

2E;

spawning constraintas X, = ool
—s,e

X, reveals that increased effort of both fleets contributes
to decreasing the slope of the spawning constraint. As the spawning constraint cuts the recruitment
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constraint from above, this corresponds to a higher ratio of stock 2 compared to stock 1 in
biological equilibrium, see figure 1. Thus, a more intense harvesting regime generally leads to
stock 2 being reduced compared to stock 1, and thus a higher relative profitability in the harvest of
the young mature stock. A more aggressive harvesting regime in general thus implies a shift

towards relatively more intensive harvesting of the young mature stock.

In the optimal steady state, the portfolio conditions (11) and (12) can be used to eliminate A . We

then obtain
pl (1_ e_qlEl ) + l// p2 (1_ e_quz )
(12) /’l = 7qlE —q E
W —pSe T —yps,e
_ 1-psR
where PSR, is the relative contribution of the two stocks to the recruitment of next year’s

young mature stock, bionomically discounted by the factor PS For P=1 , that is, when
economic discounting is abstracted from, this can be recognized as the slope of the recruitment
constraint (8) in Figure 1. The numerator in expression (12) is the contribution of the two stocks to
profit. The denominator is the bionomically discounted sum of the contributions of the two stocks
to next year’s spawning stock. As expected, we see that as the shadow price must be nonnegative.
Conditions (9) and (10) together with (12) together determine the two efforts as functions of the

stocks in Case i). The expressions are messy and we do not incude them here.

In Case ii) the optimal escapement of stock 2 when inserting for « is given as

x ot _ G/ PG
. 1-0

X, —c¢c,/ / . . .
1 =G P P8 TY depends on the relative contribution to recruitment y , the

where o, =
X, 1-ps,

discount factor, survival rates and the share of stock 1 that can be harvested with a profit. If o, =0

12



_ G/ p,0,

, myopic harvesting occurs. For case iii) we have X, %% 1 with
X,—c¢c,/ S . P :
o, =—2—"2 GBP, _ P5 , and with a similar interpretation.
X, 1-ps ly

The comparative static effects of changes in the economic parameters on the optimal harvesting
effort are straightforward. Exploitation of each stock increases with own price and catchability, and
decreases with unit costs. On the other hand, a decrease in the discount factor contributes to
increasing the harvesting pressure of both stocks. Finally, the effect of changes in the survival rates
are less straight forward. Increased survival of one stock all others equal will reduce the harvesting

effort of that stock. But the effect on the exploitation of the other stock is difficult to identify.

3.3. Dynamic properties

Above the steady state with a constant number of fish through time was analyzed. To ensure
stability of the system, we require that the spawning constraint intersects the recruitment from
above, and hence that R'<1, see the appendix. Under this assumption, the system will be locally
asymptotically stable for all constant harvesting effort levels. As the profit function is nonlinear in
the controls, theory suggests that fishing should be optimally adjusted to lead the population
gradually to steady state; that is, some kind of saddle-path dynamics, but with some degree of

under- or overshooting due to the discrete time formulation.

4. Exploitation I1: Non-cooperation

4.1 The setting

We now consider the situation where the two fleets are owned and managed by separate agents that
exploit the fish stocks in a non-cooperative manner. Both agents are assumed to have full
information about each other’s profit functions, and we also assume that both agents know the
biological equations and can monitor and assess the size of both stocks perfectly. These are
standard assumptions as used by e.g. Mesterton-Gibbons (1996), and Fischer and Mirman (1992).
See also Pereau et al. (2013) and the references therein. In this full information game each agent

maximizes its own profit only, subject to both growth constraints.
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A fully dynamic, or analysis of the game studied here requires some assumption about the updating
of information and strategy choices made by the two fleets. A natural candidate for a closed loop,
or feedback, equilibrium in the present situation would be to assume that information is updated
once a year. However, due to the sequential nature of the game, the standard backwards induction
solution procedure employed in the literature (e.g. Levhari and Mirman, 1980) leads to the
uninteresting result that completely myopic behavior is used by both fleets in this case. This is
because, at every stage and for both fleets, the stock size available at the beginning of the season is
determined by the escapement of the other stock at the previous stage, which is completely in the
hands of the other fleet when complete fishing selectivity is assumed,. Hence, there is no incentive
for either fleet to take the future into account when forming its own harvesting policy. Alternative
assumptions could be to let exploitation policies be updated more seldom, such as every other year.
However, this feels somewhat arbitrary; a more probable case is that the other fleet’s effort can be
monitored more often than once a year, something that would normally lead to more agressive
behaviour. In this section we thus choose to focus on an open loop equilibrium solution, where
polices are formed once and for all at the beginning of the game, and compare this solution with the

situation where one or both fleets are myopic, in addition to the optimal cooperative solution.

4.2 Myopic equilibrium

We first consider a myopic solution, where both agents maximize their respective current profit
while taking the behavior of the other agent as given. This corresponds to the open access situation,
where each fleet contains infinitely many individual vessel owners, but may be realistic also with a
finite amount of agents. Indeed, as shown by Clark (1980), open access behaviour may occur even
with only two agents, in a continuous time setting. For fleet 1, we then find

(13)| OL/OE,, = pg X, e ¥ —c, <0; E, 20,

while

(14)  om,, I 0k, = F-.)z(lzxz,teﬂZEZ't —-¢,<0; E,; 20

is for fleet 2. These two conditions together with the constraints (3) and (4) determine the effort

use, stock sizes and the dynamic interaction among our two fleets.

Harvest is profitable if and only if marginal profit exceeds marginal cost for zero effort; that is,
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PG X;, —C >0. We then have p,gX, e * =c withE;, >0, so that escapement equals the zero
marginal profit stock level c, / p,qg;. If this holds for both agents we have Case i). For Fleet 2 this

implies that the condition

X, =8 4 +5, P BN
P.0, P.d; P04,
C2 < Sl Cl

P.d, 1_52 P.0,

must hold. This is the case for sufficiently high survival rates, for instance with s, s, >1/2 when
¢,/ pg =c,/p,q,. With p,>p, this condition is more likely to be satisfied. Inserting this
condition into the spawning constraint (8) yields now X, ., =s.c,/ p,q, +5,C, / p,d, which is a

static equation and states that the steady state number of old mature fish will be equal to the sum of
the survival adjusted zero marginal profit stock levels. The corresponding condition for fleets 1 to

be in operation is that X, as implicitly defined from the expression X, =s,R(X,+ac,/ p,q, ),
exceeds c,/ p,q,. If either the former or latter condition is not satisfied, we will be in case Case ii)
or Case iii), respectively. In Case ii) where Fleet 2 is unprofitable, the spawning constraint reads
Xy =8C / po, +5, X, . This describes a linear difference equation of stock 2 that is stable
becauses, <1. In Case iii) with unprofitable harvest of Fleet 1, we find that the spawning

constraint reads X, ., =, X, +5,C, / p,d, . Therefore, in this case we have the dynamic system:

X = SR(Xy, X, )and X, ., =8 X, +5,C, / p,d,, which is stable because R'<1 and s <1.

Figure 2 demonstrates the equilibrium situations resulting from the different harvesting regimes
that can arise in the myopic situation. The dashed lines depict the recruitment constraint and the
‘natural’ spawning constraint when E, = E, =0. Both fleets are in operation if the lines defined by

X,=c¢/pq and X,=c,/p,q, intersectin the area above the recruitment constraint and below

the natural spawning constraint. The actual spawning constraint, identified as a solid line, is
defined piecewise from the different harvesting regimes that correspond to the three cases. An

example of Case i) is given in Figure 2a) , where the zero marginal profit lines intersect in the point
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P . The resulting equilibrium is where the spawning constraint X, =s.,/ p,g, +5,C,/ p,q,

intersects the recruitment constraint, resulting in the equilibrium Q.

In Case ii) with (1—32)c2/ p,d, >S.C, / p,a, only fleet 1 is in operation. As seen in Figure 2b), the
point P is above the natural spawning constraint. The equilibrium point Q is found where the
line X, =[s,/(1-s,)](c,/ p,g,) intersects the recruitment constraint. Figure 2c) shows the

situation where only fleet 2 is in operation, as the point P lies below the recruitment constraint.

The spawning constraint reads X, =s,X,, +5,¢,/ p,d, and Q shows the resulting equilibrium.
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4.3 One of the fleets is myopic

In this subsection it is assumed that one of the two fleets is myopic and maximizes profit each year
without taking the future into account. At least for fleet 2 we consider this to be a rather realistic
case, as the coastal fishery can be view as consisting of many small vessel owners that are not
sufficiently organized to behave strategically so as to affect the harvest decision of fleet 1.

We thus choose to focus mainly on the case where fleet 2 is the myopic player in this section. As all
strategic considerations then belong to fleet 1, and although we assume simultaneous moves, the
model can be considered as a Stackelberg game with fleet 1 as the dominant player. Fleet 2 thus
adjusts passively to the behaviour of fleet 1 while fleet 1 takes fleet 2’s optimal adjustment into

account before forming its own harvest decision.

The game is solved by backwards induction and we first solve the problem of fleet 2 in stage two.

Fleet 2 maximizes current profitz, = p,X,, (1—e‘qusz )—c2 E, , while taking the stock size X, as
given. Therefore, if harvest is profitable for fleet 2, ie. X,, >c,/p,q, , we have

p,0,X,.e @ —c,=0. On stage 1, fleet 1 faces three different potential optimization problems,

depending on whether fleet 2 is in operation or not, and, in the latter case whether the absence of
fleet 2 is due to strategic overfishing by fleet 1. When fleet 2 operates, (14) holds with equality and

the spawning constraint changes to X, ., =sX, e +s,c,/ p,q, . The Lagrangian of this

problem is

L = Zpt{ P Xy (1_ CR ) —-cE,
t=0

— P |:Xl,t+1 —5,R ( X1 Xy )] — PHiy |:x2,t+l - Sle_qlEl'l X —S,(c, / pzqz)]}

Note that the fishing effort of fleet 2 is not included here. This gives the necessary conditions for

maximum for fleet 1 as:
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(15) aLllaEl,t = plqlxl.teithEly1 -G _p:ul,t+151qlXl.teiqlEl’t <0; El,t >0, t=012,..,

(16) 0L, /O, = py (1€ %5 )= 4 + oAy iSoR, + oty 58 * =0, t1=1,2,3,..,

and
(17) oL /10X, = pA SR =, =0,t=123,....

The shadow price of stock 2 in the steady state, as seen from the perspective of fleet 1, can now be
solved for as
p(1-e*
(19) p= ) = )
y—pse ™
whereby the optimal steady harvest policy for fleet 1 can then be found explicitly in terms of the
optimal escapement of stock 1 by using (11):
(20) Xle—qlEl — l//C1/ plql
w—ps +C 1/ pa X,
This condition can be rewritten in the form of a ‘Modified Golden Rule’ (MDG; Clark, 1990),

which is a familiar optimality condition for the exploitation of renewable resources in discrete

time.

pl_cl/(qlxl) 4

(20%) WV
pl_cl/(qlxle qlEl) P

The other case to consider is when fleet 2 is not operating even though fleet does not make any

effort to keep fleet 2 out of business. Fleet 1 then enjoys a natural monopoly and optimizes as if
being a sole owner. The recruitment constraint is then X, ., =s X, & ** +s,X,,. Going through
the same optimization procedure as above leads to the shadow price of stock 2 as

(1)
w(1-ps,)- pse =’
and the optimal escapement of stock 2 as

(1_ PS,; )Cl ! p,g,
W(l_psz)_psl +¢,/ pg; X,

(21) H=

(22) X e % =
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The MDG version of this condition is
—-c /(g,X -
(22’) pl 1 (ql l)E :(//1 pSZ )
pl_cll(qlxle . 1) PS

In the last situation, fleet 1 finds it profitable to overfish to deter fleet 2 from operating. This leads

to the condition X,e®® =[(1-s,)/s |c,/p,g, . Together with the condition

X, = sOR(lec2 / p2q2) , this determines both the effort of fleet 1 and the stock size in steady state.

It is a numerical task to determine whether this solution is more profitable for fleet 1 than

coexistence. We briefly state the corresponding solutions for fleet 2 when fleet 1 is myopic as

p2—C2/(q2X2) 1

P, —C; (%Xze_qZEz ) PS;

when fleet 1 is in operation, and

P, —C, /(qzxz) _Y=p5

P, =G, (qzxzeiqZEz) ¥ps,

when fleet 1 does no operate. To deter fleet 1 from fishing, the condition ....must be met

It is not clear which situation is most preferable to each fleet: being myopic or being the optimizer.
If both fleets prefer being myopic, no matter what the other fleet does, the only Nash equilibrium is
that both fleets are myopic, if they are able to coexist. But if each fleet prefers the myopic solution
if and only if the other fleet optimizes, there are two asymmetric pure Nash equilibria, in addition to
one in mixed strategies. In this case, we have a chicken game where each fleet has an incentive to
stay disorganized to commit itself to a myopic policy, in order to induce the other fleet to optimize.
Lastly, if both prefer a solution where both fleets optimize, but would rather be myopic if the other
fleet is so, a prisoner dilemma game ensues where a cooperative solution can in pprinciple be

sustained by trigger strategies. This question is analyzed in the numerical section.

Open loop equilibrium

Now we consider the situation where each fleet behaves strategically and optimize fully with
respect to the biological constraints, taking the behavior of the other fleet as given, We confine
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ourselves to an open loop Nash-Cournout equilibrium, as explained above, assuming that the fleets
do not update their strategies during the course of the game. Both fleets maximize own profit
taking the behaviour of the other fleet as exogenous, and obtains, the necessary conditions

(25) 6L/8E1,t = plqlxl,teiqlEm —C _plttl,t+lslqlxl,te7qlEl" =0, t=012,..,

(26)  OL/OX,, = py(1—e %% )= A + pA SR + oy a8 =0, 1=12,3,.,

and

(27) al—/axz,t = PSRy — t4, "'/O,ul,ulsze_qZEz't =0, t=123,....

Note that the shadow prices x, and 4, will now generally differ between the two fleets, hence

the subscripts. The resulting harvesting rule is still given by condition (13) above, but the steady

state shadow price of the old mature stock, as seen from fleet 1’s perspective is now given as

Py (1_ e )

28 = :
( ) 'ul l//(l—psze_quz )_psle‘fhE1

Using this expression in (13) gives the optimal harvesting rule

] X
1-X L
1 l// (1_ psze7q2E2 )

Xl_cl/qlpl

1

where X, = is the share of X, that is above the zero profit level.or, in MDG form,

P —C /(qlxl) 1_psze_q2E2
P —=C / (Chxleiqﬂz1 ) PS;

Similarly, the same procedure applied to fleet 2 gives

VP, (1_eiq2E2 )

(@) = l//(l— S, %5 )— pse
which gives
X = Co! e
1-X, y/—!/,/)pslez-qﬁ
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P, -G, /(qzxz) _ l//—loslefqlEl

P, =€, /(qzxzeiqZEz) PS;

It is not clear whether the non-myopic fleet will harvest more or less depending on whether the
other fleet operates. In a static Cournout model, aggressive behavior from one agent tends to induce
the other agent to less aggressive behaviour. However, in this case the opposite may also be
conceivable. With aggressive behaviour from fleet 2 for instance, fleet 1 will have a smaller
incentive to harvest conservatively, as its natural capital in the form of a large standing stock will
be captured by the other fleet. On the other hand, profitability goes down for fleet 1 when fleet 2
operates aggressively, something that would a priori lead to less effort by fleet 1. The overall effect

is ambiguous.

5. Numerical illustrations
To illustrate the model numerically we use the following parameter values taken from Skonhoft et.
al. (2012): s0=0.6, s1=s2=0.7, pl =2, p2 =3, q1=q2=0.5, c1=c2=10. They are not meant to

represent any particular fishery, but only to illustrate the workings of the model. The recruitment

a(X,,+aX
function is specified as the Beverton-Holt function R(letxzvt)— Xy, 2)

= with a=1,500
b+(X1¥t +aX2’t)

as the scaling parameter and b =500 as the shape parameter, and the parameter a =1.5 indicating

higher fertilility of the old than the young mature age class.

The non cooperative situation is illustrated with reaction functions for the two fleets. The contour
lines indicate total profit in the cooperative solution, which implies harvesting of stock 2 only for
the baseline parameter values. Note that the reaction function for fleet 2 slopes upwards, indicating
that better profitability for fleet 1, which leads to an outwartds shift, induces also fleet 2 to devote

more effort. This is due to the strategic advantage of fleet 1 because stock 1 is able to reproduce.
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It is also evident from the figure that the Nash-Cournout equilibrium solution implies
signifigcantly lower total profit in the fishery.

23



6. Extensions

6.1 Non-selectivity issues

In this subsection we relax the assumption of perfect selectivity. First we treat the case where there
is no selectivity at all, so that the two fleets do not discriminate between the young and mature
stock. Then we discuss the intermediate case, where selectivity is imperfect. When the fleets have
no way to discriminate between age classes, the population equation for stock 2 is modified by

Sett|ng ql = ql and q2 = qZ , SO that X2+l,t = Sl (eqlEm + eQzEz,t _1) let + Sz (equz‘t + eqlELt _1) )(2Yt

The two fleets are now identical, except for possibly different catchability and unit cost parameter

values.

Performing the same optimization procedure as in the previous sections leads to the following first

order conditions

0 oL/ GE,, = pg X, & "™ —C, — p4 1,0, X, & " =0, t=012,..,

0 OL1OE,, = P,0,X,.8 ¥ —C, — pt4,,5,X,,8 ¥ =0, t=0,12,...,

0 L1 Xy = Py (1€ %5 )= A + pA SR, '+ ot (€% +e%% —1)=0, t=1,2,3,...,
and

0 oL/oX,, =p, (1— e ®F )+ PSR, "= th + Pl 1S, (e“zE” +ett —1) =0, t=123,....

The reaction functions along with the cooperative solution are illustrated in Figure 3. As the fleets
are identical, the optimal cooperative solution is represented by a straight line on which every

combination of the two fleets give the same total profit.

24



20 T T T T T T - =
\ @Tmal profit cooperative solution

18 | Reaction function fleet 1 B
Reaction function fleet 2

16

14

E2

10

X |

2 4 6 8 10 12 14 16 18 20
E1

As the figure indicates, the Nash Cournout solution implies lower total profit also in this case.
However, the difference between Nash and cooperative solution is smaller than in the situation
with full gear selectivity. Perhaps surprisingly, gear selectivity, while being beneficial in a
situation with full cooperation, may contribute to more aggressive harvesting effort in a

competitive fishery.

7. Concluding remarks
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Appendix
Stability

The general system is given as
Xitn = R(Xl,t +aX,, )
Xot1 = Slxl,teiqlEl‘t + Szxz,teiqZEz't

R' aR'

The Jacobian matrix J =\ = .

gives the expression

se 5,8 P

A= %[R 5,0 B+ \/( R'+s,e %% )2 ~4R '(sze’quzv‘ —ase )}

2
- %{R 5,0 P 4 \/( R'—s,e *™ ) +4R'ase ™ }

to determine the characteristic roots of the system. Both roots are required to have modulus less
than unity for asymptotic stability. As the trace is postive and both roots are real, stability is

- — —_ 2 -
ensured iff R'+s,e ™ +\/(R'—sze quz.t) +4R s B <2,

Define
a =—R'-s,e™ %™

a, =R '(sze‘quz“ —asle“hE“)

The necessary and sufficient condition for stability are (Gandolfo, 1997, ch. 5)
1+a +a,>0
1-a,>0
1-a,+a,>0

These conditions can be written as

1-R'_ se ™
aR'  1-s,e%™

IR 5,6 %% —se ¥ 1
aR' «

1-R'_ (1+R)/a+se ™
aR' 5,8 %"
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The first inequality states that the slope of the recruitment constraint must be less than the slope of

the spawning constraint at the equilibrium, and holds only if R'<1. Once this is satisfied, the
other inequalities are satisfied as well. Hence, the condition that the spawning constraint cuts the

recruitment constraint from above is a necessary and sufficient condition for stability. Moreover,

this condition holds for all E,,E, >0, so that there are no constant levels of fishing effort that can

destabilize the system.
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Upper left: Both fleets operate.
Upper right: fleet 1 only.
Lower left: fleet 2 only.
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