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Abstract

This paper analyses simple biodiversity protection plans regarding to
how well they perform from the perspective of biodiversity, using for that
matter alternatively Weitzman’s and Rao’s criterions, two biodiversity
indices stemming from different disciplines. Both indices rest on pieces
of information about (1) species survival probability, (2) some measure
of distinctiveness between species. And each index has its own way to
combine these data. Because we modelize interdependent probabilities,
we arrive at what we call in situ versions of those criterions, which even-
tually are functions of protection efforts only. We show that choosing a
particular in situ criterion has policy implications, for they sometimes de-
liver diverging protection recommendations. And we disentangle the role
played by the data in their ranking logics, which helps us to highlight their
major characteristics and differences as measurement of biodiversity.
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1 Introduction

Choosing species for prioritization is an extremely complex issue, which implies
underlying interrogations about the value of biodiversity. They are worth asking,
however, in a context of shrinking conservation funds worldwide. The recent 12th
Meeting of the Conference of Parties to the Convention on Biological diversity,
held in October 2014, has again expressed an urgent call to increase mobilization
of financial resources at international and domestic levels from a large variety
of sources, including major productive sectors (Chiarolla & Lapeyre, 2014).
In order to get this funding on political agendas, information on the ”rate of
return” of investing funds to conservation, along with careful definition and
prioritization of conservation targets will be crucially needed (Pearce, 2005,
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Plenary Session of the European Association of Environmental and Resource
Economists).

Indeed, a rational use of scarce money on biodiversity conservation rests on
a prioritization of its components, i.e. a ranking of the categories of species or
habitats for conservation. Such a maximization methodology has been popular-
ized by Weitzman (1998) and his ”Noah’s ark problem”!. It is a cost-effective
method helping Noah to board species on his arch, using a biodiversity function
to be maximized, subjected to a budget constraint. Of course, the outcome of
such a ranking methodology is strongly influenced not only by the constraint
imposed on the problem, but first and foremost by the initial choice of the ob-
jective function retained for defining biodiversity. Actually, in the subsequent
literature this method has raised two research questions: i) which meaningful
index to use in order to measure biological diversity?, i7) in addition to the bud-
get limitation, how to incorporate a constraint that properly reflects ecological
interactions between species?

As for the first question, numerous measures of biodiversity have been pro-
posed, notably by ecologists and economists. Yet, little has been done so far
to compare their outcomes in terms of diversity prioritization. As noticed by
Aulong, Erdlenbruch and Figuieres (2005) and Baumgértner (2007), measuring
biodiversity requires prior value judgements on the character and purpose at-
tributed to biodiversity. An important sub-class of indices, advocated in Wood
(2000), is based on data about pairwise dissimilarities between species (Rao,
1986, Weitzman, 1992, Solow et al, 1993, Hill, 2001, Gerber, 2011). Gerber
(2011) provides a comparison of the last four indices, though not in a context
of in situ protection plans. And Rao’s index has been ignored, despite its im-
portance in ecology and biology.

Regarding the second question, the Noah’s ark approach - whatever the
biodiversity index used in the objective function - can also be met with scep-
ticism regarding its capacity to account for ecological interactions and there-
fore to tackle seriously in situ conservation issues (Mainwaring, 2001, Weikard
2002). In successive papers, Baumgartner (2004), Van der Heide et al (2006)
and Simanier (2008) already noticed that accounting for species interactions
may reverse Weitzman’s conservation ranking, and even suggested to turn to
other types of indices in order to rank biodiversity conservation issues. In Cour-
tois, Figuieres and Mulier (2014), we develop a general model for ranking in
situ conservation projects accounting for species interactions. But the diversity
function was left unspecified, which does not allow to understand the issues
related to the choice of a particular index within an in situ protection context.

This is the task we challenge in this paper. Using the framework developed
by Courtois et al (2014), two diversity indices will be scrutinized: Weitzman
(1992) ’s index, which is popular in several literatures including economics, and
Rao (1982) ’s index, mostly used in ecology and biology, but largely ignored by
economists. Both indices account simultaneously for abundances and dissimi-

IThis is a range of other important and related papers, among which Vane-Wright,
Humphries and Williams (1991), Crozier (1992), Faith (1992), Weitzman (1992), Solow, Po-
lasky and Broadus (1993), Bossert, Pattanaik and Xu (2003).



larity measures. Rao’s index is defined as the expected dissimilarity between
two entities randomly drawn from a collection, whereas Weitzman’s index, in
the specific context we will analyze, is the expected length of the evolutionary
tree associated to the collection. Both Rao’s entropy and Weitzman’s index have
an axiomatic characterization, which establishes their transparency as diversity
measures (Rao, 1986, Bossert, Pattanaik and Xu, 2002).

Since our goal is to unravel and understand basic issues, we will simplify
the study whenever possible. Attention is restricted to a three-species ecosys-
tem? with ecological interactions. Weitzman’s and Rao’s indices are used for
the comparison of extreme preservation policies where, say, the manager of a
natural park must choose between allocating his whole budget only to a single
species. The second section of this paper modelizes the type of in situ prioriti-
zation problems we are dealing with. After describing the characteristics of our
three species ecosystem, we define how both indices combine this information
in their general form and how they may be used for ranking species for in situ
conservation. The third section aims at disentangling the role of the different
parameters that compose the indicators, namely (i) the autonomous survival
probabilities, (ii) the measure of dissimilarity, (iii) the coefficients of ecological
interaction. We end this paper with a discussion over the limit and perspectives
of this approach.

2 A class of in situ prioritization problems

Consider an ecoystem with three species. The protection plans we analyze in
this paper are as simple as possible: protection efforts are binary, i.e. a species
is protected or not; and the entire available budget is enough to finance the pro-
tection of one species, no more, no less. Protection plans for two or three species
are not affordable. Without being too specific for the moment - more details
will appear below - if X stands for a 3-dimensional vector whose components
indicate protection efforts granted to species, and P is the vector of survival
probabilities, then the link between efforts and probabilities is a 3-dimensional
vector of functions P (X).

We then compare conservation plans regarding to how well they perform
from the perspective of indices of expected biodiversity. We shall invoke al-
ternatively two different indexes of expected biodiversity, Weitzman’s index,
noted W, and Rao’s index, R. Both belong to the familly of diversity mea-
sures aggregating dissimilarities between species. Both combine in a different
way (1) species survival probability, and (2) some measure of distinctiveness be-
tween species. In our framework, we integrate and articulate information about
ecological interactions and protection efforts in order to express new in situ ex-
pected diversity indices, W (X) = W (P (X)), and R (X) = R (P (X)) . And the
logic of optimal in situ protection plans is to solve the programs maxx W (X)

2As explained later, a two-species ecosystem would be even simpler, but would not allow
to study the role of dissimilarities on the results. At least three species are needed for that
purpose.



or maxx R (X).
Now let us enter deeper into details about P,W, R and X.

2.1 Species interdependent survival probabilities

In the absence of ecological interactions and protection policies, each species i
has an autonomous survival probability q; € [0,1], i = 1,2,3. In order to take
into account the ecological interactions and the protection efforts put in place,
those date have to be modified to give interdependent survival probabilities, de-
noted as P; € [BZ-, Fz} . These probabilities are linear functions of the protection
efforts z; € {0,Z},i = 1,2, 3, measured in terms of probability variations, and
of numbers r;;, representing the marginal ecological impact of species j on the
survival probability of species i. It is reasonable to assume |r;;| < 1, ie. a
variation in probability P; has a less than proportional impact on F;. Overall,
the system of interdependent probabilities of survival for three species is the
following:

Pr=q +x1+7r12P+1r13P3

Py =qy+x2+ 1011 + 1233

P3=gqs+a3+rs1Pr + 132D

For practicality, let us define the following vectors and matrices, denoted in bold
characters:

q1 0 12 T13 1 0 0
Q = q2 s R = T21 0 T23 y I= 01 0 5
| 93 rg1 132 0 0 0 1
[ P o P, i) 1
P=|P~ |, P=| P |, P=|P, |, X=| 2
L P ﬁs Bg Zs3
In matrix form, the system of probabilities reads as:
P=Q+X+Rx«P. (1)

Under the following assumption :
To3T32 + T12To1 + 713731 + T12731723 + T21713732 < 1,
the system (1) can be solved? to give:
P=[I-R| '+«(Q+X) . (2)

Thus, a particular protection plan X induces a vector of survival probabil-
ities. Recall that P(X) = [I—R]™" % (Q + X) refers to the affine mapping

3This is a sufficent condition for solvability. The necessary condition is:

723732 + T12721 + 13731 + 12731723 + r21713732 £ 1 .



from efforts into probabilities, i.e. the expression of the survival probability
system as a function of efforts. P (X) is a vector, each element of which can be
given explicitly (see Appendix A). In a three species case, survival probabilities
without protection policies are therefore:

P=P(0x.%) , (3)

where (3 is a three-dimensional vector with all components equal to 1, and tere-
fore 0% (3 is a vector made of 3 zeroes. In the _absence of ecological interactions,
I- R]_1 is the identity matrix, P=Q and P = P + T * 13 = Q4 * (3.

2.2 Species dissimilarities

Species are also characterized by their dissimilarities, which at a general level
are pairwise distances between any two species. Those distances capture and
measure the intuitive notion of ”differences among biological entities” (Wood,
2000). It is here useful to refer to the library metaphor as in Weitzman (1998),
under which each species can be understood as a library, that is a collection of
books. Hence, the dissimilarity or distance between species ¢ and j is measured
by the number of books present in 7 but not in j. Dissimilarities, or books, do
not influence directly each species survival probabilities, but enters in a different
way in the measure provided by biodiversity indices.

We will consider ultrametric distances among species. The ultrametric prop-
erty is possessed by all dissimilarities which can be directly associated with
rooted trees in which all the end nodes are equidistant from the root of the tree
(Van de Peer, 2003). There are two reasons to focus on the ultrametric case.

Firstly, when applied to a non ultrametric framework Rao’s index may lead
to unpalatable diversity rankings, where only few species are retained for conser-
vation? (Pavoine et al., 2004, 2005); by contrast, in the ultrametric case Rao’s
index reaches its maximum value when all species are granted some attention.

Secondly, Weitzman (1992) constructed his diversity function using a com-
plex iterative process. But this calculation boils down to the simple computation
of the expected length of the evolutionary tree when distances are ultrametric.
In addition, Solow and Polasky (1994) shows that apart from ultrametric dis-
tances, Weitzman’s index is not strictly monotone relatively to distances used.
Indeed, in a three species case (which is the case developed in this paper),
Weitzman’s measure of diversity is equivalent to the sum of the largest and the
smallest distance. It is thus insensitive to any modification of the intermediary
distance.

Ultrametric distances are thus an interesting framework for comparing both
indices outcomes while keeping matters as simple as possible, especially as we
introduce potential interactions among species of this tree.

4In an extreme example, with one variable measured as source of distinctiveness among
species, quadratic entropy is equal to the variance and retains species showing the extreme
values of this variable.



In the three species case, such dissimilarities translate into a phylogenetic
tree representation with proportional branches as shown in Figure 1 below.

Figure 1: Ultrametric tree with three species

In this case:

e E;, the number of ”books” specific to species (library) i and only species
¢ (with ¢ =1,2,3),

e J, the number of "books” specific to species 1 and 2,

e G, the number of "books” common to 1, 2 and 3 (here set arbitrarily close
to zero, and thus species 3 has no common books with species 1 and 2).



The total number of different "books” contained in libraries 1,2 and 3 are:

Mi=FE1+J+G,
My =FEy+J +G,
Ms =FE3+ G,

where J is the number of books that libraries have in common, and E; the
number of books contained in library 1 but neither in library 2 nor in library 3.

Considering d;; as the distance between species 7 and j, we obtain the fol-
lowing values for our distances between species 1, 2 and 3 in the ultrametric
case :

dig=dy =F1=FEy=F,
diz=d31 =dpz=dsa =FEx+J=FE1+J=FE;

Distances between three species i, k, [ are ultrametric if and only if for all , k, [
we can verify :

i < max (di;, dy) -

With J = 0 there are no common genes between species 1 and 2. Thus
we get back to a case very similar to the two-species case, in which the tree
representation is as in Figure 2.

Figure 2: Ultrametric tree with three species and J =0

E1 Ez E3

In this setting where J = 0, ecological interactions and survival proba-
bilities are the only parameters discriminating the three species. Indeed, the
three species are here perfectly substitutable from the point of view of their
distinctiveness. As J raises away from 0, we are able to represent the role of
distinctiveness among species for both indicators since Fy, = FEs # Ej3.



2.3 Definition of in situ indices for biodiversity

The indices used in this paper are built on the space of ecological and dissimi-
larity parameters presented so far. Denote 2 this space, and

e=(Q,RZ,E JG)eQ,

a particular element of this parameters space.

Weitzman’s index used for in situ protection When applied in our three-
species ecosystem with ultrametric distances, Weitzman’s expected diversity
index is the expected length of the evolutionary tree depicted earlier. More
precisely:

e If no species disappears, an event that occurs with probability P, PP,
the length of the total tree, or the total number of different books if the
three libraries are available, is 1 + Es + J + F3 + G,

e if only species 1 survives, an event with probability (1 — Py) (1 — P3) P,
the length of the tree is E1 + J + G,

e if only species 1 and 2 survives, an event with probability Py P> (1 — P3),
the length of the tree is £1 + Fs + J + G,

e and so on...

Therefore, the expected length of the tree is:

W (P)=PiPaPs(Ey + Ba+J+ E3+G)+ (1 - P) (1 - P3) Py (E1 +J +G)
S (1= P)(1—P3)Py(Bs+J+G)+(1—P)(1— Py) P; (B3 +G)
+PPo(1-P)(E1+E;+J+G)+PPs(1-P)(Ei+J+ Es+G)
+ PPy (1—Pr) (Ba+J+ E3+G) .

Given that G is close to zero and can be neglected, after tedious algebra Weitz-
man’s expected diversity boils down to a simple expression:

WEP)=P, (E1+J)+ P (Ey+ J)+ P3E3s — P PJ
:(P1—|—P2—|—P3)(E—|—J)—P1P2J

Since the goal is goal is rank protection priorities while taking into account
ecological interactions, the above index has to be modified in order to incor-
porate the later information. We obtain the desired qualification by plugging
the relation P (X) = Ax (Q 4+ X) between efforts and probabilities into W (P).
This results in what may be further called Weitzman’s biodiversity indez for in
situ preservation:

WEX)=WoePX)=PAX)+ LX)+ X)) (E+J)—- P (X)P(X)J .



As shown in Appendix B, we can rewrite more synthetically this expression
under a matrix form:

We (X) =X« AV « XT + BY « XT + WV . (4)

In this formula, AY and BY are, respectively, a matrix and a vector whose
components are complex combinations of parameters included in the element
e € Q. Details are given in Appendix B. Note that if the vector e changes, so
does expression (4). Hence we explicitly mention this dependence via subscripts,
as in W, (X).

Rao’s index used for in situ protection Rao’s index in our three-species

ecosystem is :

R(P)=P\P,(E1+ E2)+ PiPs(E1+ Es+J)+ PaPs(Es+ Es+ J)
=2PP,E+ 2P Ps(E+J)+2P,P; (E+J)
=2[(P1Po+ PiPs+ PoP3)E+ (P + P2) PsJ] .

Considering again the relation P (X) = Ax (Q 4+ X) between efforts and prob-
abilities, Rao’s biodiversity index for in situ preservation is:

_ (P (X) P2 (X) + P (X) P3(X) + P (X) P (X)) B

R(X)=R(P(X)) =2
30 = fP X)) + (P (X) + P2 (X)) Py (X) J

In Appendix C it is shown that this index boils down to a simple matrix ex-

pression:

Re(X) =X+ AR« XT 4+ BE« XT 4 P |

where the notation emphasizes again a dependence with respect to the vector e
of parameters.

2.4 Rankings of in situ protection projects

Our purpose is to compare three different extreme policies: preserving either
species 1, or 2 or 3, referred to as:

e Project 1:

Xl - [fa())()] 9
e Project 2:

X2 = [05I70] )
e Project 3:

X3 =10,0,7]



Ranking of projects according to Weitzman For a given vector e of

parameters, project 1 is preferred over project 2 and project 3, according to
Weitzman’s index for in situ protection iff:

We (X1) > max {W, (X2) , W, (X3)} . (5)
The formal framework developed so far allows to express the necessary and

sufficient condition on parameters for this ranking to hold:

[0,7,0] x AV x +BW

o 8 ©
o 8 o

[Z,0,0]x A% « +BV > max

o o gl
o o 8l

[0,0,7] x AWV +BY

8 © o
8 o o

Thus we would prefer the preservation of species 1 to the species 2 or 3 if
the value of Weitzman’s index is higher than its value when preserving species
2 or species 3.

Ranking of projects according to Rao :  If Rao’s criterion is used to rank
priorities, then project 1 is favored iff:

Re (X1) > max{R. (X2), Re (X3)} (6)
or equivalently:

0 0
[0,7,00«AFx | T | +BE« | 7
T T 0 0

[Z,0,00%A%x| 0 |4+Bfx| 0 | > max
0 0 0 0
[0,0,7]* AZx | 0 | +BEx| 0
x x

Thus we would prefer the preservation of species 1 to the species 2 or 3 if
the value of Rao’s index is higher than its value when preserving species 2 or
species 3.

Mutatis mutandis, the same kind of formal statements can indicate the nec-
essary and sufficient conditions on parameters for project 2 or 3 to be selected
by each criterion. And we are also in position to study more in depth special
cases, for the particular interest they convey and/or because their simplicity is
helpful to grasp the logic of the two in situ rankings.
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3 Disentangling the role of Q, R and D in both
in-situ indices

3.1 The influence of autonomous survival probabilities (Q)

Let us first examine the case in which survival probabilities are the unique
source of heterogeneity among species, and look at the ranking established by
both indicators in this specific situation.

In this setting, we consider a vector ey, representing parameters configuration
in which J > 0, 712 = r91 = r and ¢; # ¢o in order to isolate the role played
by autonomous survival probability in a two species ultrametric case. In this
setting, the matrices Q and R become:

Q1 0 r O
Qe, =@ |,Re=|1r 00
0 0 0 O

Proposition 1 Let the parameters be given by the vector e in a two-species
ecosystem. In this case, the two diversity indices deliver opposite rankings:

o Weitzman’s preserves the ”strongest” species, i.e. the in-situ ranking ver-
ifies:
> >
We, (X1) 2 We, (X2) & @1 2 @

e whereas Rao’s preserves the "weakest’ species, i.e. the in situ ranking
verifies:
Re (X1) ZRe, (X2) & @Za

Proof. Appendix D. m

Therefore with identical - or without - interactions between species and
no efforts allocated to one or the other species survival probability, Weitzman
would retain the most robust species - with the higher autonomous survival
probability - whereas Rao would retain the most fragile species - presenting the
lower autonomous survival probability.

Such results are not surprising, given the original purpose of both indicators.
Weitzman’ seeks the longest expected tree and only one species can be protected.
If only one species goes extinct, E' "books” are lost but E + J are safe. It is
wise then to affect protection resources on the species which is the most safe,
unless J = 0 because in this case, clearly, Weitzman’s criterion is indifferent
regarding which species should be afforded protection efforts. For Rao, however,
the objective is different. This index wishes to provide the least variance possible
in the survival probabilities of species, in order to keep as much species as
possible in the ecosystem. It will thus tend naturally to help the weakest species,
in order to maximize the chances of keeping this species into the web of life.

11



As a third and substituable species is introduced into the framework (i.e.
keeping the same distances between species 1, 2 and 3, and thus J = 0 and
G = 0), those results are confirmed (Proof in Appendix D.1). In a second step,
we will examine the role of dissimilarity, holding constant autonomous survival
probabilities and all species interactions to zero.

3.2 The influence of dissimilarity (D)

Dissimilarities between species play a different role depending on the indicators.
In our ultrametric case and in a two species framework, such dissimilarities are
identical and can not explain differences in rankings (species are perfectly substi-
tutable from the point of view of their distinctiveness). The role of dissimilarity
only appears as we add a third species into the framework, and provided that the
number of common genes between species 1 and 2 get away from zero (J > 0)
( figure 1).

Considering the parameter vector e; in which ¢ = ¢2 = ¢3 = ¢ and in
the absence of interactions (i.e, r;; = 0,Vi,j) in the ultrametric case where
FEy =FEy; =FE FE3 = FE+ J, the matrices Q and R become:

q 0 0 O
Q=g |, R,=|10 0 0
q 0 0 O

Proposition 2 Let the parameters be given by the vector es. In a three-species
ecosystem where dissimilarities are the only source of heterogeneity among species,the
two diversity indices deliver the same rankings:

e They are indifferent between preserving the two least (and equivalently)
distinctive species (species 1 or 2).

e They recommend to preserve the most distinctive species (species 3).

Proof. Remark that W, (X1) = W,, (X2) and R, (X1) = R, (X2) .Therefore
the two indices preserves indifferently species 1 or 2. We now need to show
when the two indices recommend to preserve species 3 rather than species 1 or
2. Without loss of generality, let us focus on the ranking between species 1 and
3. Weitzman index recommends to preserve species 1 iff:

We, (X1) > W,, (X3) & —Jzg>0< Jog< 0

which is impossible, and therefore, Weitzman would preserve species 3 rather
than species 1.
Rao index recommends to preserve species 1 iff:

Re, (X1) > Re, (Xo) & —2J%2¢ > 0

which is again impossible, and thus, Rao would preserve the most distinctive
species 3 rather than species 1. m

12



In the vector of ecological interactions Re,, if non null but identical inter-
actions r are introduced, both indices lead to the same general conclusions, but
with an additional stronger constraint depending mostly on the strength of in-
teractions. Indeed, both indices would retain the most distinctive species if and
only if r < 1/2, and the least distinctive species otherwise (see the proof in
appendix).

3.3 The influence of ecological interactions

The interactions between two species can be considered as unilateral, e.g. species
1 impacts species 2 but not vice versa, or bilateral, e.g. species 1 impacts species
2 and species 2 impacts species 1. There are 22 = 4 possibilities to consider.
But as soon as one comtemplates a three-species ecosystem, there are 33 =
27 potential pairwise interactions between species. The number of possibilities
quickly explodes with the number of species. In face of this complexity, our
strategy will be to focus on a small number of cases of particular interest. And
to simplify matter we assume away any role for dissimilarities, i.e. G = 0 and
J=0.

3.3.1 Bilateral interactions and a ”silent species”

Let us first consider a situation with two interacting species 1 and 2, and another
third, ”silent” species - i.e. which doesn’t interact with neither species 1 nor
species 2. Consider a parameter vector ez where r15 # 791, all the other r being
equal to zero, and ¢; = g2 = q3 = ¢q. The matrices Q and R become :

q 0 772 O
Q63 = q ) R63 = r21 O O
q 0 0 0

Proposition 3 In a three-species ecosystem in which only species 1 and 2 inter-
act but not species 3, both indicators would preserve the interacting species with
the larger beneficial impact on the other species, or the lower overall negative
impact. For Weitzman, this impact should in addition be positive, otherwise it
would preserve the ”silent” species 3.

o Weitzman’s in situ ranking preserves species 1 rather than 2 or 3 when:

o1 > T
We, (X0) 2 max (W, (X2) Wy (X)) = {7207
o With J=0, Rao’s in situ ranking preserves species 1 rather than 2 or 3
when:
’R,€4 (Xl) E maX{Re4 (Xg) ,R54 (Xg)} < T21 > T12

Proof. See Appendix
]
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With Rao’s index, we preserve the species with the largest impact on the
other species. With Weitzman’s, an additional constraint is imposed on the
interactions and account for the existence of this new incomer in the ecosystem:
it would preserve species 1 if its impact on species 2 is positive, and larger than
the impact of species 2 on species 1. Otherwise, Weitzman’s index would retain
the ”silent” species 3 rather than preserving species with negative impacts on
each other.

The general message is thus that in a three species ecosystem in which only
two species interact, both indices tend to preserve the species with the largest
marginal benefit (or the lowest marginal cost) on the other species. This result
can be illustrated using the principal categories of interactions between our two
species.

i) Predation: species 2, a predator, feeds on species 1, its prey. So ro; > 0
whereas 719 < 0. In this case, both indices would preserve the prey -
here species 1 - since its interaction coefficient with species 2 is positive
(ro1 > 0) and larger than the impact of species 1 on 2 (since ri2 < 0).

ii) Mutualism: in this case species 1 and 2 impact positively on each other, and
therefore 15 > 0 and r5; > 0. Here both indices would retain the species
with the largest collective marginal impact.

iii) Competition: two species have to share a common resource in the same
living area that cannot fully support both populations, hence r15 < 0
and ro; < 0. Here both indices would retain the species with the lowest
negative impact on the other species.

2

Thus the introduction of a third, ”silent” species 3 will impose stricter con-
ditions for retaining species 1 rather than the others, even if only species 1
and 2 interacts. For Weitzman, interactions of species 1 on species 2 must be
strictly beneficial to species 2, otherwise it would retain species 3, which can’t
harm any of the other species. As a consequence, the introduction of a third,
non interacting species in our ecosystem is far from trivial. This specific three-
species ecosystem is actually an extension of a two-species ecosystem, in which
only species 1 and 2 are present (See proof in Appendix D.2). However, if we
decide to include two instead of one bilateral interaction in our three species
ecosystem, things can get a bit more tricky.

3.3.2 Two bilateral interactions and no ”silent” species

With two bilateral interactions, every species are potentially in interaction. In
this case, two species are impacting the third species, and one species impacts
the two others. Given the potential complexity of those interrelations, we illus-
trate the choices made by the two indices using the predator-prey relationship.

For example, we choose to have one predator (1) and two preys (2 and 3).
Here, the interactions are double-sided, since the predator impacts negatively

14



its two preys, and therefore is simultaneously positively impacted by the two
prey species.

(1)1 — 2and 1 — 3,
(2)2 S 1and3 51,
We are thus in the case where:

ro1 < 0and r3; <0
7‘12>0andr13>0

The difficulty with such a situation is to be able to consider simultane-
ously those interactions inside our two indices of biodiversity. Indeed, with four
different and simultaneous interaction coefficients, the strength of cross effects
between coefficient can’t be disentangled and discussed. One solution to this
problem, although very imperfect, is to look at interactions successively rather
than simultaneously. In our one predator- two preys system, successive interac-
tions can be described as follow: first, the predator feeds on the two preys, and
thus impact them both negatively; next, the two preys benefit to the predator,
and thus have a positive impact on the predator.

We will thus need to look successively at the cases where ro; # r31, and
then r15 # r13.We have thus 2 vectors of parameters e5 and eg, leading to the
following matrices Q and R :

q 0 0 O 0 712 713
Qeses = | ¢ , Res =] m1 0 0 , Re=10 0 0
q rz1 0 0 0 0 o0

Using 5 and 6, and applying successively the vector of parameters es; and
eg, the choices of both indices are the following. With parameter es, and thus

21 7’5 31 -

We, (X1) > W, (X2) & r121+7131 >0,

We, (X1) > Wey (X3) & 7121 +731 >0,

Res (X1) > Rey (X2) & (rairsi +731) (2¢+2) + 721 (3¢ +2) >0,
Res (X1) > Rey (X3) & (rairsi+721) (2¢+2) + 731 (3¢ +2x) >0,
Res (X2) > Re; (X3) & 131 >721

Weo (X1) > Wee X2) & r12<0,

Weg (X1) > We (X3) & m13<0,

Wee (X2) > Weo (X3) & 112 >71138,

Reg (X1) > Rey X2) & —griz—7112(3g+2) >0,
Reo (X1) > Res (X3) & —qriz—ri13(3g+x) >0,
Res (X2) > Re (X3) & 7112 > 713
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Those results allows us to illustrate a specific case of predator-prey relation-
ship. In the depicted case where species 1 is a predator and 2 and 3 are two
preys, we have two types of information about species interactions which may
be used successively :

1. How much does the predator impacts the preys 2 and 3 7 Predator 1
feeds on the preys 2 and 3, and impacts them negatively. Thus we have r3; < 0
and ro1 <0

e Weitzman would never preserve species 1, and would be indifferent be-
tween preserving the prey species 2 or 3. As a consequence, in this simple
configuration, Weitzman can’t help us in order to choose one or the other

prey.

e Rao would never preserve species 1, but however helps us to choose be-
tween the prey species 2 and 3. Indeed, in the case where r3; < 0 and
ro1 < 0, Rao would preserve the prey species 2 iff r3; > 791, i.e. if the
prey 2 is affected more negatively by the predator than the prey 3, which
makes sense.

=Therefore, as seen earlier, no index would recommend to preserve the
predator in this ecosystem. Which prey species must be selected for con-
servation is still unclear for Weitzman, whereas Rao’s index decide to
preserve the prey which is the most threatened by the predator. In order
to refine this logic, we would need another information about the benefits
for the predator of each preys.

2. How much do preys 2 and 3 benefit to predator 17 Species 2 and 3 impacts
predator 1 positively to a certain degree, and thus we know that r13 > 0 and
r12 > 0.This adds another layer of information about the interactions, which
will helps us to refine which of the 2 prey species must be preserved

e Weitzman is now able to choose between preserving species 2 and 3 : It
would preserve the species which has the largest positive impact on the
the predator, and thus would preserve species 2 rather than 3 iff 15 > r13.

e Similarly, Rao recommands to selects for preservation the prey which ben-
efits the most the predator, i.e. 715 > r13.

=Therefore, Weitzman chooses among the two prey using information on
which of the two has the largest impact on the predator. Rao decide to
retain the prey which has the largest impact on the predator AND which
suffers the largest impact by the predator.

This very simplified case where bilateral relations are characterized by predator-
prey relationships are relatively easy to describe. However, it is much more diffi-
cult for both indices to decide over preservation of one species in the apparently
simplest case of commensalism (bilateral positive impacts), and competition (bi-
lateral negative impacts). Indeed, the two successive steps would lead to retain

16



potentially two different species at each step, without the capacity of deciding
over which of the two must be chosen for conservation.

In addition to this difficulty, this successive treatment of the question leads
to overstate or understate the value of the final survival probabilities, to which
we should apply the effort for preservation. Indeed, the effect of the two preys
2 and 3 on the predator 1 should be accounted for when calculating the new
survival probabilities for species 1, 2 and 3, and the step at which we apply the
protection effort T will thus be important.

4 Discussion

Our simplified framework allows us to conclude over simple characteristics of two
diversity objective functions, and disentangle the respective roles of autonomous
survival probabilities g, ecological interaction r and dissimilarity considered in
strict isolation, for each of the two indexes. However, the reality of such choices
is much more complex than this structure.

The object of this discussion is to put those simple, yet important results
into perspective. Indeed, once we allow two different categories of parameter to
vary (say ecological interactions r and dissimilarity J), results are not as clear
as when we considered the variations of a single parameter. In many cases, it
seem that the parameters contained in vector e can influence the outcome of
the index in isolation, but also in combination. To see this, we describe two
different examples in which we introduce dissimilarity in addition to another
dimension (autonomous survival probabilities ¢ in the first example, and eco-
logical interactions r set equal accross the three species, in the second example).
We observe that the rankings ends up to depend on this variable rather than
dissimilarity.

Autonomous survival probabilities ¢ and dissimilarity, J > 0 : our
first example looks at the combination of survival probabilities and dissimilarity.
The introduction of dissimilarity with a J > 0 impose additional restrictions on
Weitzman’s retained choice. Indeed, Weitzman’s in situ ranking is indifferent
between preserving species 1, 2 or 3 when J = 0. However, as soon as J > 0,
the ranking verifies:

1—
We, (X1) Z max {We, (X2) , We, (X3)} & — (Q2 <TT> +4q3+ 37) Z q1,q2, for all 7

and is therefore dependent on the variables ¢, g2, and ¢3, whereas Rao’s in situ
ranking is inchanged and still verifies for all r:

Res (X1) > max{Re; (X2), Re; (X3)} & ¢1 < max{ga,q3} -

The proof of those statements is in Appendix E.1.

Interaction coefficient r # 0 and dissimilarities, J > 0 : in this sec-
ond example, we combine interaction coefficients - set equal accross species -
with dissimilarity. Similarly, this new configuration leads to impose additional
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restrictions on the choice of species, this time for the two indices. Consider the
parameter vector e7, in which ¢ = g2 = ¢3 = ¢ and r;; = r, Vi, j,with » # 0.
This is a very specific case of interactions, in which all interactions are set equal,
but not necessarily equal to zero. The matrices Q and R thus become:

q 0 r r
Q€7 = q 9 Re7 = r 0 T
q r r 0

In this peculiar ecosystem the two diversity indices:

e are indifferent between preserving species 1 or species 2.

e recommend to preserve species 3 when r < 1/2, species 1 or 2 else.

The Proof is in Appendix E.

Therefore, when dissimilarity is introduced with equivalent r, the conser-
vation choice depends on the interactions rather than the number of common
genes J. Thus, when two parameters are used in combination instead of being
in isolation, the results may be refined or even modified.

In addition, if the interactions are considered as successive in their occurence,
this framework should be adapted in order to account for this sequentiality in
the calculus of interdependant survival probabilities, and may well impact on
the final choice.

Appendix
A The system of interdependent probabilities

Solving the system of ecological interactions for P;, P, and P; as functions of
X = (z1,22,23)" gives :

(g1 + 1) (1 — ra3r32) + (g2 + x2) (r12 + r13732) + (g3 + x3) (r12723 + r13)

P (X) = 1
— 723732 — T'127T21 — 713731 — 712731723 — 721713732
(7)
Py (X) = (g2 + 22) (1 — 713731) + (g1 + 21) (121 + 7r31723) + (g3 + 23) (r21713 + 723)
1 —ra3r32 — 12721 — 13731 — 12731723 — 721713732
(8)
Py (X) = (q1 + 1) (r31 + 732721) + (g2 + 22) (112731 + 732) + (g3 + 23) (1 — r12721)

1 —ro3r3e — T12721 — T13731 — 712731723 — T'21713732
(9)

Probability of species 1 can be described as a combination of each species in-
trinsic survival probability augmented by protection effort, articulated through
direct and indirect interactions among species.

18



In vector notations, probabilities as functions of efforts are:

Py (X)
PX)=| B(X) | =A+(Q+X) .
P; (X)

B Weitzman’s criterion for in situ protection

In our three-species model, the expected diversity of the ecosystem according
to Weitzman’s criterion is:

W(P) :P1P2P3(E1+E2+J+E3+G)+(1—Pg)(l—Pg)Pl(E1+J+G)
+(1-P)(1=-P)P(Ee+J+G)+(1—-P)(1—P)P3(E;+G)
+PP,(1—P3)(E1+FEa+J+G)+PPs(1—P)(Ey+J+ Es+ Q)
+P,P;(1-P) (B2 +J+E3+QG) .

Since G is close to zero, this expression simplifies to
W =P P,P;(F1+Es+J+E3)+(1—PFP)(1—P3) P (Ey+J)

+(1=P)(1=P) P (B2 +J)+(1-P) (1 - ) PE3
+P1P2 (]. —Pg) (El +E2+J)+P1P3 (]. —PQ) (E1 +J+E3)
+PP;(1—P)(Es+J+ E3) .

Developing and simplifying, Weitzman’s expected diversity boils down to:

W (P)= Py (E,+J)+ Py (Ex+J) + PsEs — P PyJ .

Now remember that probabilities are functions of efforts, P (X). Therefore,
Weitzman’s expected diversity as a funtion of efforts is:

W(X) =W (P(X)) ,
=P (X)(Er+J)+ P (X) (B2 +J) + P (X) B3 — P (X) 2 (X)) J .

Recall finally that, because distances are ultrametric, £; = E5 = F and E3 =
E + J. Therefore:

W(X) =[P (X) + P (X) + P (X)[(E+J) - P (X) P2 (X) J .
More precisely, using (7), (8) and (9):

(g1 + 1) (1 — ra3r3e) + (g2 + 2) (112 + r13732) + (g3 + x3) (r12723 + 713)
(E+J)| +(g2+z2) (1 —ri3rsi) + (1 + 1) (ron + r31723) + (g3 + x3) (121713 + 723)

W (X) = 1 +(q1 + 1) (r31 +7r32m21) + (g2 + @2) (112731 +732) + (g3 + 3) (1 — r12721)
0] (1 + 1) (1 —rogr32) (g2 + x2) (1 —r13731)
% + (g2 +x2) (12 +113r32) | * | + (@1 +21) (121 +731723)
+ (g3 + x3) (r12723 + 7r13) + (g3 + x3) (r21713 + 723)
(10
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. 2
with ¢ = (1 — rogr3g — 12721 — r137'31 — r12731723 — T21713732) -
We can rewrite this general form as follows:

W (X) = a3 + a¥y a3 + als a3 + albxize + alfziw3 + a¥iwoxs (11)
+oW g 4+ b g + b 25 + W
where
w J w
a; = —? (1 —7ro3r32) (121 +731723) , a9y = —g (r12 4+ r13ra2) (1 — risran)
W J
Q33 = _? (rigras + 713) (roir13 + 723)
w —J
Q12 = ﬁ [(1 —rosrse) (1 — r13r31) + (112 + r137s2) (121 + r31723)]
—J
a% = ? [(1 — rogrse) (ro1713 + rog) + (112723 + T13) (121 + r'31723)]
J
a% = —E [(r12 + 713732) (r21713 + 723) + (112723 + 713) (1 — r13731)]

(E+J) 5 [(1 = r23732) + (ra21 + r31723) + (131 + 132721

pw 2q1 (1 — ra3rsz) (r21 + r31723)

— +q2 ((1 — roarae) (1 — r13731) + (112 + 713732) (121 + 731723))

+q3 ((1 — 723732) (ro1713 + 723) + (r12723 + 713) (121 + 731723))

(E+J) % [(r12 + 713732) + (1 — r13731) + (r12731 + 732)]

Y = @1 ((1 = ragrse) (1 — riars1) + (112 + 113732) (121 + 731723))

— +2¢3 (r12 + 113732) (1 — r13731)

| g3 ((r12 +713732) (ro1713 + 723) + (r12723 + 713) (1 — 713731))

(E+J) é [(r12723 + 713) + (r21713 + 7r23) + (1 — 712721)]

bW q ( (1 —7ro3r32) (121713 + 723) ) q ( (r12 + 7r13732) (r21713 + 723) >

U+ (112723 4 713) (121 + T31723) 2\ + (r12re3 +113) (1 — r13731)

+2¢3 (112723 + 1r13) (121713 + 723)

q1 (1 — rosrsa) + qo (r12 + r13732) + g3 (r12723 + 713)
(E+J) % +q1 (121 + 7r31723) + g2 (1 — 113731) + g3 (T21713 + 7'23)

+q1 (31 + r32r21) + q2 (r12731 + r32) + 3 (1 — 712721)
w a3 (1 — ro37r32) (121 + 731723)

+q3 (r12 + m13732) (1 — r13r31) + @5 (r12723 + r13) (T21713 + 723)

—g‘g +q1g2 (1 — 723732) (1 — r13731) + (112 + r13732) (121 + 731723))
+q1g3 ((1 — r23732) (121713 + 723) + (r12723 + 713) (121 + 731723))
+q2q3 (112 + r13732) (121713 + 723) + (T127723 + 713) (1 — 7137°31))

Finally, a matrix form expression would be more compact. Let us define :

w 1w 1 W w

w_ | £ 2% B | Lw_ | U
Al = ?a21 Q9o 3Q23 |, B =1 b
za Lol N

2031 3a32 33 3
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Then Weitzman’s criterion for in situ conservation is:

We(X) =X+ AV « XT + BY « XT W

C Rao’s criterion for in situ protection

As explained in the text, given the relation P (X) = Ax* (Q + X) between efforts
and probabilities, Rao’s index for in situ protection is:

RX)=P (X)P(X)(E1+E)+ P X)P3(X)(E1 +Es+J)+ P, (X)Ps (X)(Ex + Es+J)
=2[(P1 (X) P2 (X) + P (X) P3(X) + P> (X) P5 (X)) E + (P1(X) + P2 (X)) P3(X) J]

and using the relation between ultrametric distances, £y = F, = F and E3 =

E+J:

R(X) =2[(P1 (X) P2 (X) + P (X) P35 (X) + P2 (X) P3 (X)) E+ (P (X) + P> (X)) P3(X) J] .

Using the survival probability system (7), (8), and (9), we obtain the follow-
ing form for Rao’s index:

(@1 + 1) (1 —723732) (g1 + 1) (ro1 + r31723 + 131 + r21732)
Ei | 4 (g2 +x2) (r1z + r13732) + (g2 + x2) (1 — r13731 + 732 + 731712)
+ (g3 + x3) (r12723 + 713) + (g3 + x3) (123 + 121713 + 1 — 121712)
1 (q1 + 1) (ro1 + r31723) (g1 +21) (1 — 723732 + 7131 + 1r21732)

R(X) =~ +F> +(Q2+$2)(1—7‘137“31) ((J2+332)(7“12+7“137“32+7“32+T317“12)

¢ + (g3 + x3) (ro3 + 721713) + Q3 + x3) 7“127”23 +ri3 4+ 1 —721712)

(g1 + 1) (r31 + r21732) Q1 + 1) 1 — 723732 + T21 + 7'31723)
+(E3+J) | +(q2+x2)(rs2 + ?"317"12 g2 + 932 (r12 4+ 713732 + 1 — 113731)
L + (g3 + x3) (1 — ra1712) (J3 + x3) (r12723 + 713 + T23 + T21713)

This form can be rewritten as :

R .2 R ,.2 R .2 R R R
a17T] + a3525 + a3303 + a150122 + 4320123 + A53T273

R (w1;22; 73) = { +bfzy + bfwy + bifws +

(12)
where
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¢

R
ar

R
(5P

R
ass

R
aia

ais

as3

by’
by’
bR

2
= (1 — 723732 — 712721 — 713731 — 712731723 — 7’21T13T32)

[ E1 (1 = ra3732) (121 + 731723 + 731 + r21732) + Ea (121 + 731723) (1 — 723732 + 731 + 721732)
+ (E3+ J) (rs1 + ra1rse) (1 — ra3r3e + ro1 + r31723)

. [ E1(r12 +r13732) (1 — 113731 + 732 + r31712) + B2 (1 — 713731) (r12 + 713732 + 732 + r31712)
+ (Es + J) (132 + r31712) (112 + 113732 + 1 — r13731)

_ [ Eq (r1ara3 + 713) (Tog + ro1r1s + 1 — ra1712) + Ea (rag + ro17113) (rag + ro1713)
+ (B34 J) (1 —rair12) (rizres + 113 + 123 + 721713)

Eq [(1 —ro3rse) (1 — ri3r31 + rag + 131712) + (112 + r13732) (o1 + 731723 + 731 + 721732)]

= +E5 [(ro1 + 731723) (r12 + T13732 + r32 + 1r31712) + (1 — 1137r31) (1 — rogrse + ra1 + r21732))

|+ (B3 +J)[(r31 +721732) (12 + 713732 + 1 — 113731) + (32 + r31712) (1 — 123732 + 721 + r31723)] |

[ Eq [(1 —ro3rae) (rog + ma1713 + 1 — mo1712) + (112723 + 713) (T21 + 731723 + 731 + T21732)]

= +E5 [(ro1 + 731723) (rog + T21713) + (123 + ro1713) (1 — 723732 + 731 + T21732)]

+ (B3 + J) [(rs1 + ra1732) (rizres + 713 + 723 +r21713) + (1 — r21712) (1 = ro3rse + 121 + 731723)] |
Eq [(r12 + r13732) (re3 + 121713 + 1 — 121712) + (112723 + 713) (1 — 713731 + 732 + 7'31712)]

= +E5 [(1 — r13731) (123 + ro1713) + (r23 + ro1713) (r12 + T13732 + 32 + 731712)]

|+ (B3 +J) [(r32 +r31m12) (r1ares + 713 + 1oz + 121713) + (1 — r21712) (r12 + 713732 + 1 — r13731)] |

= 2afiq1 + athgo + alhgs

= afhqr + 2alhqs + alhgs
= allq + allge + 2a55qs

= aﬁlﬁ + af’zlhfh + aééq% + a2R3q2q3 + aé%q% =+ aﬁa(h%

In order to write a matrix form, let us define:

1, R 1R R
P i S N O o
Al = ?G'Ql azxy 3as |, Bl = by
IR L1,k R bR

2031 3432 33 3

Then, in matrix form, Rao’s criterion for in situ protection is:

Re(X) =X+« AP« XT 4+ BE « XT 4 1. (13)
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D Proof of Proposition 1

Considering vector e;, matrices A% and BY shrink to

Ae = _W (1+T) —?7" 0 5
i 0 0 0
(1) = L 2ra + (14 12)g2)

B = | (1 +7) = g + (14 %)a1)

0

According to Weitzman’s in situ ranking inequality in the case where q; #
g2 and every other parameters being equal (vector e;) and considering that
1 — rior91 > 0, effort is allocated to species 1 iff:

We, (X1) > W, (Xo) & XAV «XT+BY «X] > Xox Al «XT+B)Y X7
e When J # 0, this inequality is true when

Jx

m(ql—fh) >0,

< q1 > q2

e When J = 0, choice is independent of intrinsic survival probabilities. The
ranking inequality is never fulfilled and effort is indifferently allocated to
the protection of one species or the other.

Rao’s in situ ranking is:
Rey (X1) > Re, (X2) & X+ AE«XT+BE«XT > XoxAl«XT+BF«XT |
& (1-1*(@-a)>0,

and thus
Rel (Xl) > Rel (XQ) < Q2 >q1 -

D.1 Proof of Proposition on survival probability with three

species

When introducing a third species and considering only differences in survival
probabilities, the parameters are given by vector ez, with r;; = r,Vi, j, and
q1 # q2 # q3. The matrices Q and R become:

Q1 0O r r
Q.= @ |, Res=| 7 0 r
qs3 r r 0
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In a three-species ecosystem where only autonomous survival probability differ,
both indicators deliver opposite rankings. Weitzman preserves the species with
the highest survival probability, whereas Rao preserves the species with the
lowest autonomous survival probability.

Proof. For Weitzman, using 5 in the case where all r are equivalent and ¢; #
g2 # g3, wWe can write :
W€3 (Xl) > Weg (XQ)

< Jr (g1 —qo) (1 —i—r)72 >0
S qp > q, forall r

and

Wes (Xl) > We;; (X3)
=
Jx (re+rq —rga + 1z + q2) (2T3+3T2 — 1)71 > 0

As 2r3 4+3r2 —1 >0, for all » > 1/2, and 273 + 312 — 1 < 0 for all r < 1/2, we
must verify:

1—
(1) rerrqlTq2+rq3+q2>0,f0rallr>1/2<ﬁ>q1><q2( TT)+q3+x> ,

1
(2) rz+rg —rge+rgs+ g2 <0, fora110<r<1/2<:>q1<—<q2( TT)+Q3+$> ,

1—
(3) re+rqr —rga+rgs+q <0,forallr <0< q > — (qz(rr)—s—q?,#—w) .
Indeed:

TTH+Tq —Tq2+1rq3+q2 < 0<:>7’(17+Q1+QS)—7"Q2+C12<0,
e re+qataqg)<—gl-r).
And, because r < 0

& (t4+qa+a)>—q

1_
& q1>—(qg(?nr)+q3+x>, forallr <0.

)

(1—r)

Thus for r > 1/2, we must verify :

qa > q2
q >—(Q2@+Q3+x)

(1-r7)
< Q1 >maxqq2,— | q , +q+x

< q1 > q2
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Thus for r < 1/2, we must verify :
Q1> G2
Q1>*(Q2@+Q3+$)
1—r
Se<n< | —— +aq3+x

Therefore, Weitzman preserves species 1 rather than species 2 or 3 when :

1—r
@2 <qg <—1|q — +q+x

For Rao, using expression 6 in the case where all 7 are equivalent and ¢ # g2 #
q3, we can write :

Rea (Xl) > Rez (XQ)

2Fx
&5 - — >0
(1 n T)g (Q1 CJ2)
< q1 <q2
and
Res (X1) > Rey (X3)
2FEx
&5 - —q3) >0
(1 n T)g (Q1 QJ)
< q1 <g3

Therefore, Rao preserves species 1 rather than species 2 and 3 iff :

¢1 < min{g2, ¢s3}

D.2 Proof of Proposition 2 species ecosystem with bilat-

eral interactions 77

In the case where 715 # ro1, every other parameters being equal (vector ey)
and considering that 1 — rior9; > 0, Weitzman would retain species one for
preservation iff:

We, (X1) > W, (X2) & Xi#AL«XT +BY+X] > XoxAY +XI +BY xX7 |

(g+z)(1+721) +q (1 +712) (¢+2) g+ ¢*ri2 + (¢ +2)* r21 + qrizras (g + 2)
—J
1- T127T21 (1 — T12T21)2
L+ra)+(g+z)(1+7r2)) 74 (q+2) + ¢®roy + (g +2)° 112 + (¢ + ) 1127014
1—1r12r01 (1- T12T21)2

<:>(E+J)(

>(E+J)<q(
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+x + qro1 + x7r291 +q + qr 2T+2m’+x2r+2r+2rr+rrm
<:>(E+J)(q qra1 21 T4 Q12>Jq 21 qxray 21 T q"T12 T q"T12721 T qri2721

1 —riory (1 —rior91)°
q+qro1+q+x+qrig + !E?"12> Jq27“21 + 712¢% + 2r12qT + T122% + T12721¢% + TT12721
- 2
1 —riaro; (1 —ri2721)
2

9 2 2
R Y
1 — 719791 (1 —712791) 1=riara (1= rizra)

Jx (2¢+ x
) x (ro1 —ri2) + #)2 (ri2 —721) >0
(1 —rior91)

(E+J)(1—rigra1) —J (2¢ + )
(1—7"127”21)2

<:>(T217T12)[(E+J)(17T12T21)7J(2q+x)]>O

>(E+J)(

( E+J
==

1 —ryora1

& (ro1 —T12)

Rao’s in situ ranking would retain species 1 for preservation iff :
Rey (X1) > Re, (X2) & Xy#AL #X] +BL +X] > XoxAl «XIT+B[ «X7 ,
& (¢ +x+ri2q+712) (@ + 71219 +7r217) > (¢ + 7129 +7127) (¢ + T + 7219 + 721)
& q(ri2 —r21) + 2% (ro1 — 112) + 2q2 (121 —112) >0,

< (ro1 —712) (x2 +2qx—q) >0,

and thus
T21 > T12

D.3 Proof : three species ecosystem, only two species in-
teract

Proof. Weitzman index recommends to preserve species 1 iff:
We, (X1) Z max {We, (X2) , Wk, (X3)}
It preserves species 1 rather than species 2 iff :
We, (X1) Z We, (X2) & 112 < a1
It preserves species 1 to species 3 iff :

We4 (Xl) z We4 (Xg) S ro1r1a + 191 > 0 1o (1 +T12) >0 191 >0

Therefore, Weitzman preserves species 1 rather than species 2 AND 3 iff

T12 < T21

We, (X0) Z mox W0, (Xa) Wy () & { 722 572
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Rao index recommends to preserve species 1 iff:
Re, (X1) Z max {Re, (X2), Re, (X3)}
It preserves species 1 rather than species 2 iff :
Re, (X1) > Re, (X2) & (112 — 721) (qr1zra1 — (3¢ +z)) >0

Supposing that grisre; — 3¢ — x > 0, we can write :

X
q (?”127“21 — 3) > x = (7’127"21 — 3) > E

which is impossible since 12721 —3 < 0,as we know that r15791 —1 < 0. Therefore,
qriero1 — 3q — x < 0 for all 791 and r15. Consequently,

Re,y (X1) > Re, (X2) < (112 — 121) (qrizrar — (3¢ +2)) >0
S 1ria—121 <0

< 1rig < To

Rao preserves species 1 rather than species 3 iff :

+x
Re4 (Xl) > Re4 (Xg) < 21 ((1 +’/‘12)2 + qq) > T9

Thus Rao preserves species 1 rather than species 2 and 3 iff

T21 > T12

=
Re4 (Xl) < max {Rc4 (XQ) aRe4 (X3)} < { ro1 ((1 4 7"12)2 + (H-T@) > 1o
=

T21 > T12

E Co-Influence of interactions and distinctive-
ness

Proof. Remark that W,, (X1) = W,, (X2) and R, (X1) = R, (X2) : the two
indices still preserves indifferently species 1 or 2. Without loss of generality, let
us focus on the ranking between species 1 and 3.

Weitzman index recommends to preserve species 1 iff:

We, (X1) > We, (X3) & Jz (qr +rz+q) (2r® + 3r° — 1)71 >0
e notice that 2r3 + 3r? — 1 > 0 iff r € |1/2,1]. We deduce that:
e when r € 11/2,1], W,, (X1) > W,, (X3) if z > —q@ which is always

true
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e when r € |—1,1/2[, W, (X1) >W,, (X3) if z < fq@ which is impos-
sible
Thus Weitzman preserves 1 instead for r € ]1/2,1],and preserves 3 for
rel-1,1/2[.

Rao index recommends to preserve species 1 iff:
Rey (X1) > Rea (X2) & 27z (qr + 1z + q) (2r° + 3r° — 1)_1 >0
e again, notice that 273 +3r* — 1 > 0 iff r € ]1/2,1]. We deduce that:

e when r € ]1/2,1], W,, (X1) > W,, (X3) if z > —q@ which is always
true

e when r € |—-1,1/2[, W, (X1) >W,, (X3) if z < —q@ which is impos-
sible.

Thus Rao preserves 1 instead for r € |1/2,1],and preserves 3 for r €
]_]-7 1/2[

E.1 Co-influence of survival proability and distinctiveness

Proof.

e For Weitzman, using 5 in the case where all r are equivalent and ¢; #
g2 # g3, and J > 0 we can write :

W€3 (Xl) > Wes (XQ)
< Jr (g —qo) (1 —|—r)_2 >0
S q1 > g, forall r
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and
Wﬁe. (Xl) > Wes (X3)
& Jz(ro+rq —rgo + g3 + q2) (20 +3r — 1)_1 >0
As 2r® +3r2 —1 >0, for all » > 1/2, and 2r® +3r? —1 < 0 for all » < 1/2, we must verify :

1—
(1) ra4+rq —rga+rqs+qa>0,forallr>1/2< g > — <qQ(rr)+Q3+x>

(1—r7)

(2) ra+rq —rgz+rgs+ g2 <0, fora110<r<1/2®q1<—<q2

(1—7)

+q3+x>

(3) m+rq1—rq2+rq3+qz<0,f0ra11r<0<:>q1>—(Q2 +q3+$>

Indeed, rx +rqr —rqga +rgs+ @ <0< r(x+q +q3) —r¢2+ g2 <0
sr(x+qg+4q3)<—g(l-r)
(1-r)
r

S @+qa+q)>—¢ ,asr <0
1_
®q1>—(q2<r)+q3+x)7fora11r<0
r
Thus for r > 1/2, we must verify :
q1 > g2
ql>—(qz@+Q3+x)
(1-r)
< g1 > maxqqz,— | Qq , +g3+2x

< q1 > q2

Thus for r < 1/2, we must verify :
q1 > G2
q > — ((J2(1;T) +qs3 +9€)
1—r
Ce<a<-|\@|——)tatr

Therefore, Weitzman preserves species 1 rather than species 2 or 3 when :

1—r
@2 <q <—1¢q - +q3+x

For Rao, using expression 6 in the case where all r are equivalent and ¢; #
q2 # q3, we can write :

R€3 (Xl) > R€3 (XQ)

2FEx
& -———= @ —¢)>0
(1+7")2( )
< q1 <q2
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and

Re, (X1) > Re, (Xs)

2Fx
&5 - — >0
RS
< q1 <q3

Therefore, Rao preserves species 1 rather than species 2 and 3 iff :

¢ < min{g2,q3} .

Thanks are due to the participants at the LAMETA internal seminar for

helpful and kind comments.
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