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Abstract

We investigate the role and performance of imitative behaviour in a
class of quantity-setting (Cournot) games. Within a framework of evolu-
tionary competition between rational, best-response and imitators players
we found that the equilibrium stability depends on the intensity of the evo-
lutionary pressure and on the stability of the cheapest heuristic(s). When
the cheapest behavioural rule is the stable heuristic (i.e. imitation), the
dynamics converge to a situation where most �rms use this behavioural
rule and all �rms produce the Cournot-Nash equilibrium quantity. When
the cheapest heuristic is unstable one (i.e. best-response), complicated
endogenous �uctuations may occur.

JEL classi�cation : C72, C73, D43
Keywords : Imitation, Competing heuristics

1 Introduction

Theocharis (1960) shows that, when �rms compete on quantity using the Cournot
(1838) adjustment process,1 the Cournot model becomes unstable if the num-
ber of �rms increases. In fact, with linear demand and constant marginal costs,
the Cournot-Nash equilibrium loses stability and bounded but perpetual oscil-
lations arise already for a triopoly. For more than three �rms oscillations grow
unbounded, but they are limited once the non-negativity price and demand con-
straints bind. This is a remarkable result since unbounded oscillations is not
what we encounter in practice.
Whereas Theocharis focused only on the Cournot adjustment process newer

research extends to models of heterogeneous expectations.2 Hommes, Ochea
�Logex, Amsterdam: daan.lindeman@logex.nl.
yTHEMA, Université de Cergy-Pontoise, 33, bd. du Port, 95011, Cergy-Pontoise Cedex,

France. marius.ochea@u-cergy.fr
1Firms that display Cournot behaviour take the current period�s aggregate output of their

competitors as a predictor for the next period competitors�aggregate output and best-respond
to that.

2 In models with heterogeneous expectations producers can have di¤erent heuristics to
adjust their production.
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and Tuinstra (2011) created a framework in which these heuristics compete
in a quantity-setting. Each �rm chooses a behavioural rule from a �nite set
of di¤erent rules, which are assumed to be commonly known. When making a
choice concerning the behavioural rules, a �rm takes the past performance of the
rules, i.e., the past realized pro�t net of the cost associated with the behavioural
rules to compare �tness. Both past performance and costs associated with the
behavioural rules are publicly available. This implies that successful heuristics
will continue to be used, while unsuccessful behavioural rules are dropped. This
strategic behaviour thus causes the distribution of fractions of �rms over a given
set of behavioural rules to change per period.
Hommes, Ochea and Tuinstra (2011) focused on the Cournot heuristic in

competition with the Nash quantity or with rational �rms. Interestingly Huck,
Normann and Oechssler (2002) discuss a linear Cournot oligopoly experiment
with four �rms. They do not �nd that quantities explode as the Theocharis
(1960) model predicts, instead the time average quantities converge to the
Cournot-Nash equilibrium quantity, although there is substantial volatility around
the Cournot-Nash equilibrium quantity.
There is a growing interest, both theoretical and experimental, in the study

of the performance of imitative players in various classes of games. Schipper
(2009) investigates imitate-the-best players and optimizers in Cournot oligopoly
and �nds that in the long-run, stationary distribution of the stochastic process
imitators are better o¤. Moreover imitation can be unbeatable if imitate-the-
best heuristic is not subjected to a money pump, i.e. game is not of Rock-
Scissors-Paper variety (Duersch et. al., 2012). Subsequently, Duersch et. al.,

2014 show that unconditional imitation (of the tit-for-tat variety) is essentially
unbeatable in class of potential games. Huck, Normann and Oechssler (2002)
�nd that a process where participants mix between the Cournot adjustment
heuristic an imitating the previous period�s average quantity gives the best
description of behaviour. Duersch et. al. (2009) analyse a Cournot duopoly,
subjects earn on average higher pro�ts when playing against "best-response"
computers than against "imitate" computers.
Therefore we focus on competition of the imitation heuristic with the Cournot

heuristic. Moreover, since classical economic theory assumes rationality, we in-
vestigate the dynamics in competition with this heuristic too. In total �ve
models where imitators compete with Cournot and/or rational �rms are inves-
tigated analytically. The framework created by Hommes, Ochea and Tuinstra
(2011) will be followed in order to do the analytics. Our concern is, �rst of all,
under what circumstances �rms may want to switch between behavioural rules
over time and second, once the Cournot-Nash equilibrium is reached whether
all �rms will keep producing the Cournot-Nash quantity or deviate.
Main �ndings are that, (i) in the case when Cournot �rms compete with

imitators that the threshold on the number of �rms that changes the system
from stable to unstable is 7, (ii) when rational �rms compete with imitators, in
the speci�c scenario of linear inverse demand and constant marginal cost, the
system is always stable regardless of the game and behavioural parameters, (iii)
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in the case when rational �rms, Cournot �rms and imitators compete, the sta-
bility depends on the evolutionary pressure and the the stability of the cheapest
heuristic(s). When the cheapest behavioural rule is stable, the dynamics con-
verge to a situation where most �rms use this behavioural rule and all �rms
produce the Cournot-Nash equilibrium quantity. So having more information
about the market does not necessarily lead to higher pro�ts due to information
costs. In the case when the cheapest heuristic is unstable, complicated endoge-
nous �uctuations may occur. In particular, when the evolutionary pressure is
high or when the number of �rms passes a certain threshold. Note that the non-
linearity causing this erratic behaviour comes from the endogenously updating
of the fractions, because in our leading example the speci�cations were linear.
The remainder of this paper is organized as follows, in Section 2 the theoret-

ical framework is introduced, here the quantity and population dynamics will
be explained extensively. In Section 3 the dynamics will be investigated under
exogenous population dynamics whereas in Section 4 the stability of the system
will be investigated under endogenous population dynamics. In the �fth Section
the results of section four are combined and the stability of a system where ratio-
nal, Cournot and imitators compete in one economy under endogenous fraction
dynamics is investigated. Finally, we conclude in Section 6.

2 Theoretical Framework

Consider a �nite population of �rms who are competing on the market for a
certain good, each discrete-time period all producers have to decide their pro-
duction plans for the next period. However, instead of simultaneously choosing
the supplied quantities directly, the �rms act according to behavioural rules that
exactly prescribe the quantity to be supplied. Before the evolutionary model is
studied a brief review of the traditional, static Cournot model will be given.
Consider a symmetric Cournot oligopoly game, where qi denotes the quantity

supplied by �rm i;where i = 1; :::n. Next to that let Q =
Pn

i=1 qi be the
aggregated production. Furthermore let P (Q) denote the twice di¤erentiable,
nonnegative and non-increasing inverse demand function and let C(qi) denote
the twice di¤erentiable non-decreasing cost function, which is the same for all
�rms. For �rm i the resulting pro�t function from the above described model
is given by

�i(qi; Q�i) = P (qi +Q�i)qi � C(qi); i = 1; :::n (1)

where Q�i =
P

j 6=i qj . Assume that the pro�t function of a �rm is strictly
concave in its own output qi. The pro�t maximizing strategy of �rm i, taking
the quantity supplied by the competitors as given, results in the well-known
best-reply function for �rm i, which is given by

qi = Ri(Q�i) = Argmax
qi

[P (qi +Q�i)qi � C(qi)]:

Due to symmetry, all �rms have the same best-reply function R(�). Moreover,
the symmetric Cournot-Nash equilibrium quantity q� corresponds to the solu-
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tion of
q� = R((n� 1)q�):

Strict concavity of the pro�t function ensures that such a Cournot-Nash equi-
librium exists. For simplicity assume that q� is the unique symmetric Cournot-
Nash equilibrium strategy.3

In this thesis focus lays on the following speci�cation of the Cournot oligopoly
game which will be called the leading example. This is the original speci�cation
Theocharis (1960) used, where inverse demand is linear and marginal costs are
constant. The inverse demand and cost function are given by

P (qi +Q�i) = a� b(qi +Q�i) and C(qi) = cqi; i = 1; :::n

respectively. First, in order to have a strictly concave pro�t function assume
that b > 0. Furthermore, for strictly positive prices assume that Q < a

b . For
these speci�cations of the inverse demand function and cost function the reaction
function is given by

qi = R(Q�i) =
a� c
2b

� 1
2
Q�i = q� � 1

2
(Q�i � (n� 1)q�): (2)

Note that if the other �rms produce on average more (less) than the Cournot-
Nash equilibrium quantity, �rm i reacts by producing less (more) than that
quantity.
Straightforward calculations show that in this case the Cournot-Nash equilib-

rium quantity, aggregated production, price and pro�t are equal to q� = a�c
b(n+1) ,

Q� = a�c
b

n
n+1 ,

P � = a+nc
n+1 and �

� = �(q�i ; Q
�
�i) =

(a�c)2
b(n+1)2 .

Traditional Cournot analysis refers to a static environment. However, in a
dynamic setting the reaction function introduced above can be used to study
the so called Cournot-dynamics where �rms best-reply to their expectations

qi;t = R(Qe�i;t); i = 1; :::n

where qi;t denotes the quantity supplied by player i in period t. The symmet-
ric Cournot-Nash equilibrium where all �rms produce q� is stable under the
Cournot-dynamics if (n� 1)jR0�)j < 1.
Main interest is on how �rm i decides to play q� and on top of that, what

does �rm i believe about Q�i when the production decision has to be made.
In the next Subsection the description of the quantity dynamics will be

given. In Subsection 2.2 some local instability results for the general evolution-
ary system are discussed. In Subsection 2.3 the population dynamics will be
discussed.

3The Cournot duopoly game may also have asymmetric Cournot-Nash equilibria, but they
do not correspond to equilibria of the evolutionary game when there is a single population.
For the linear-quadratic speci�cation of the Cournot oligopoly model speci�ed below, there
can indeed be asymmetric boundary equilibria, but they do not in�uence the dynamics of the
evolutionary model.
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2.1 Production plans

In the Cournot oligopoly game the producers have to form expectations about
opponents�production plans. Based on this expectation �rms decide how much
to produce the next period. One approach is to assume complete information,
i.e. rational �rms with common knowledge of rationality. This implies that
�rms have perfect foresight about competitors�aggregated production plan, i.e.
Qe�i;t+1 = Q�i;t+1: This results in the following production plan:

qi;t+1 = R(Q�i;t+1); i = 1; :::n

Alternatively one may consider rules that require less information, for example
Qe�i;t+1 = Q�i;t: This results in the following production plan:

qi;t+1 = R(Q�i;t); i = 1; :::n (3)

where �rms expect that aggregated production in the next period equals current
aggregated production. This is the so called Cournot adjustment heuristic.
It is a broadly supported idea that not all producers best-reply to their

expectations. Experiments (Huck 2002) show that people often imitate others�
behaviour. A heuristic that possibly seizes this production plan is the so called
imitation-heuristic. Imitators belief that �everyone else can�t be wrong� and
will therefore produce the average of the other players�production in the next
period, i.e.

qi;t+1 =
Q�i;t
n� 1 ; i = 1; :::; n: (4)

Finally, Bosch-Domènech and Vriend (2003) test the importance of models of
behaviour characterised by imitation of successful behaviour, that is to imi-
tate the quantity which the �rm with the highest pro�t in the current period
produced, i.e.

qi;t+1 = qj;t; i = 1; :::n; where �j;t =Maxf�1;t; :::;�k;tg:

They �nd that the players do not rely more on imitation of successful behaviour
in more demanding environments and explain the di¤erent output decisions
as predominantly relate to a general disorientation of the players, and more
speci�cally to a signi�cant decrease of best responses.
In the next subsection we will investigate the dynamics under expectation

rule (3) and (4) in greater detail.
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2.2 Instability threshold

2.2.1 Cournot adjustment heuristic

If all �rms use the Cournot adjustment heuristic (3), quantities evolve according
to the following system of n �rst order di¤erence equations

q1;t+1 = R(q2;t + q3;t + : : :+ qn;t);

q2;t+1 = R(q1;t + q3;t + : : :+ qn;t);

=

qn;t+1 = R(q2;t + q3;t + : : :+ qn;t):

(5)

Local stability of the Cournot-Nash equilibrium depends on the eigenvalues of
the Jacobian matrix J of the system of equations (5), evaluated at that Cournot-
Nash equilibrium q�. This Jacobian matrix is given by

J jq� =

0BBBB@
0 R0(Q��1) � � � R0(Q��1)

R0(Q��2) 0
...

...
. . . R0

�
Q��(n�1)

�
R0(Q��n) � � � R0(Q��n) 0

1CCCCA : (6)

Firms do not respond to their own previous production, therefore all diagonal el-
ements are equal to zero. All o¤-diagonal elements in row i are equal to R0(Q��i),
since individual production levels only enter through aggregate production of
the other �rms. Moreover, at the symmetric Cournot-Nash equilibrium we have
Q��i = (n� 1)q� for i = 1; :::; n, thus all o¤-diagonal elements of (6) are equal
to R0�). The Jacobian matrix (6) thus has n�1 eigenvalues equal to �R0�) and
one eigenvalue equal to (n�1)R0�), which is the largest in absolute value. From
this it follows directly that the symmetric Cournot-Nash equilibrium is stable
whenever

�(n) � (n� 1)jR0�)j < 1; (7)

where �(n) is de�ned as the largest eigenvalue of the Jacobian, evaluated at the
equilibrium.
Leading example. From equation (2) it can easily be seen that R0(Q��i) = � 1

2 ,
meaning that if others�aggregated output increases by one unit, the Cournot-
Nash �rms decrease their output by 1

2 units. From stability condition (7) it
follows that the Cournot-Nash equilibrium is stable for this speci�cation only
when n = 2 and unstable when n > 3 (and neutrally stable, resulting in bounded
oscillations, for n = 3). The reason for this instability is �overshooting�: if ag-
gregated output is above (below) the Cournot-Nash equilibrium quantity, �rms
react by reducing (increasing) their output. For n > 3 this aggregated reduction
(increase) in output is so large that the resulting deviation of aggregated output
from the equilibrium quantity is larger in the next period than in the current,
and so on.
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2.2.2 Imitation heuristic

If all �rms use the imitation heuristic (4), quantities evolve according to the
following system of n equations

q1;t+1 =
Q�1;t
n� 1 ;

q2;t+1 =
Q�2;t
n� 1 ;

=

qn;t+1 =
Q�n;t
n� 1 :

(8)

Local stability of the Cournot-Nash equilibrium with only imitation �rms de-
pends on the eigenvalues of the Jacobian matrix of the system of equations (8)
evaluated at that Cournot-Nash equilibrium q�. This Jacobian matrix is given
by

J jq� =

0BBBB@
0 1

n�1 � � � 1
n�1

1
n�1 0

...
...

. . . 1
n�1

1
n�1 � � � 1

n�1 0

1CCCCA : (9)

Imitators only respond to other �rms�production and do not respond to their
own production, therefore all diagonal elements are equal to zero. If one com-
petitor increases current production by one unit, an imitator will increase next
production with 1

n�1 unit, therefore all o¤-diagonal elements are equal to
1

n�1 .
The Jacobian matrix (6) thus has n�1 eigenvalues equal to � 1

n�1 and one eigen-
value equal to (n� 1) 1

n�1 = 1 which is the largest in absolute value. Therefore
it follows immediately that the Cournot-Nash equilibrium is neutrally stable
independent of n and system structure (price and cost function). The reason
for this is that if one producer changes his production plan the economy will
stabilize to a new equilibrium unequal to q� and will remain at this new equilib-
rium until one producer deviates again. In fact this system has in�nitely many
neutrally stable equilibria, namely if qi = qy 8i; the system is neutrally stable
for all qy.

2.3 Population dynamics

In the previous sections it is explained how the supplied quantities evolve over
time under the Cournot and the imitation heuristic. In this section it will be
explained how the population fractions evolve over time. Let us �rst introduce
the vector �t which has entries equal to �k;t, which is the fraction of the pop-
ulation that uses heuristic k at time t. Thus for every time t, �t denotes the
K-dimensional vector of fractions for each strategy/heuristic and belongs to the
K-dimensional simplex �K = f�t 2 RK :

PK
k=1 �k;t = 1; 0 � �k;t � 1 8kg. We
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will now describe how the fractions �k;t evolve over time. It is assumed that
the choice of a behavioural rule is based on its past performance, capturing the
idea that more successful rules will be used more frequently.
Evolutionary game theory deals with games played within a (large) popu-

lation over a long time horizon. Its main ingredients are its underlying game,
in this thesis the Cournot one-shot game, and the evolutionary dynamic class
which de�nes a dynamical system on the state of the population. The evolu-
tionary dynamical system depends on current fractions �t and current �tness
Ut. In general, such an evolutionary dynamic in discrete time, describing how
the population fractions evolve, is given by

�k;t+1 = K(Ut; �t) (10)

with Ut = (U1;t; :::; UK;t)0 the vector of average utilities and �t = (�1;t; :::; �K;t)
0

the factor of fractions. To make sure that the population dynamics is well-
behaved in terms of dynamic implications we assume that K(�; �) is continuous,
nondecreasing in Uk;t, and such that the population state remains in the K-
dimensional unit simplex�K . In the next Subsection leading class of population
dynamics will be explained in detail, the Logit evolutionary dynamics.

2.3.1 Discrete choice models - the Logit evolutionary dynamics

The Logit evolutionary dynamic is treated extensively in Brock and Hommes
(1997). This Section contains a brief discussion.
In order to update the fractions we assume that average utility of all heuris-

tics is publicly observable. Suppose that the observed average utility associated
behavioural rule Hk takes the form

~Uk = Uk +
1

�
�k;

where �k�s are IID. This captures the idea of bounded rationality since indi-
viduals do not necessarily select the rule that yields the highest utility. The
parameter � represents the evolutionary pressure. Notice that in the extreme
case where � = 0 we have completely random behaviour: the noise is so large
that observed average utility is equal for all behavioural rules. Each behavioural
rule is thus chosen with equal probability: �k;t =

1
K 8k. In the other extreme

case, when � ! 1 obscures and everybody switches to the most pro�table
strategy each period. If the noise terms �k�s are distributed according to the
extreme value distribution the evolutionary fraction dynamic results in the so-
called multinomial Logit evolutionary dynamic, the following updating dynamic
is given by

�k;t+1 =
e�Uk;t

KX
j=1

e�Uj;t

; k = 1; :::;K: (11)
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The equilibrium fractions are given by

�k;t+1 =
e�(�

��Tk)

KX
j=1

e�(�
��Tj)

; k = 1; :::;K (12)

In case of equal costs of the heuristics, equilibrium fractions are thus given by
��k =

1
K 8k, since production is equal and thus pro�ts are equal. Note that

the population dynamics remains in the interior of the unit simplex for �nite
�. This implies that in each time period all behaviour rules are present in the
population and no behavioural rule will ever vanish (this is the so-called no-
extinction condition). Furthermore, no new behavioural rules emerge from this
model (this is the so-called no-creation condition).
In the leading examples we will focus on the Logit evolutionary dynamics.

First of all because this dynamic is also used in Hommes, Ochea and Tuin-
stra (2011) and therefore creates the possibility to make a good comparison
and furthermore because the Logit evolutionary dynamic has by de�nition nice
regularity/continuity conditions (0 � �k � 1).
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3 Heterogeneity in behaviour in Cournot oligopolies

In this Section we study the Cournot game and introduce heterogeneity in pro-
duction plans. In this Section we focus on competition between two heuristics.
We relax this in Section �ve, where we study the competition between rational,
Cournot and imitation �rms. First we study competition between the Cournot
and the imitation �rms, with this as an example, two theories will be presented
on how to model this heterogeneity in production. In the �rst theory the �rms
select their heuristic that completely describes how much to supply in the next
period. They select heuristic k with probability �k. In the second theory n
�rms are randomly picked from a large population of �rms in which a fraction
�k plays according to strategy k. Main di¤erence is that the �rms observe under
the second theory more outcomes and thus under the law of large numbers lets
the production plans within a heuristic converge whereas in the �rst theory all
�rms (even the �rms using the same heuristic) have di¤erent production plans,
making the dynamics analytically untractable. After this extensive study of
competition between Cournot �rms and imitators, we introduce another model
where rational �rms compete with imitation �rms. Since the dynamics are only
tractable under theory 2, we will focus on this theory when studying this model.
The assumption of �xed � for each period will be relaxed in section 4.

3.1 Cournot vs. Imitation �rms

3.1.1 Theory 2: A large population game

In order to facilitate studying the aggregate behaviour of a heterogeneous set
of interacting quantity-setting-heuristics we study the Cournot model as a pop-
ulation game. Consider a large population of �rms from which in each period
groups of n �rms are sampled randomly and matched to play the one-shot
n-player Cournot game. We assume that a �xed fraction of � of the large pop-
ulation of �rms uses the Cournot heuristic and the others use the imitation
heuristic. After each one-shot Cournot game, the random matching procedure
is repeated, leading to new combinations types of �rms. The distribution of
possible samples follows a binomial distribution with parameters n; and �. Be-
low the example Cournot vs. Imitation �rms will be discussed again but now
under theory 2 of random matching.
Suppose that a fraction of � of the population of the �rms uses the Cournot

heuristic and observes the population-wide average quantity �qt and best re-
sponds to it, qCt+1 = R((n � 1)�qt), where qCt is the quantity produced by each
Cournot �rm in period t. Consequently a fraction of � �rms of the large popu-
lation makes use of the the imitation heuristic. Making use of the law of large
numbers, the average quantity played in period t can be expressed as

�qt = �qCt + (1� �)qIt :

Remember that imitation �rms produce in the next period the by the other
�rms average produced quantity in the current period qIi;t+1 =

Q�i;t
n�1 . Again by
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a law of large numbers we obtain Q�i;t
n�1 ! �qtwhen n !1. Therefore we obtain

the following quantity dynamics

qCt+1 = R((n� 1)(�qCt + (1� �)qIt ))
qIt+1 = �qCt + (1� �)qIt :

(13)

Note that this is a 2-dimensional dynamical system which dimension cannot be
reduced. Furthermore the Cournot-Nash equilibrium is not the unique equi-
librium of the imitation rule, in fact all quantities are. The Cournot-Nash
equilibrium is, however, still the unique equilibrium quantity of the complete
dynamical system.

Proposition 1 The Cournot-Nash equilibrium,where all �rms produce the Cournot-
Nash quantity (q�; q�), is a locally stable �xed point for the model with exogenous
fractions of Cournot and imitation �rms if and only if

j1� � + �(n� 1)(R0�)j < 1: (14)

Proof. It can easily be shown that the Jacobian matrix, evaluated at the
Cournot-Nash equilibrium (q�; q�), is given by0@(n� 1)�R0�) (n� 1)(1� �)R0�)

� 1� �

1A : (15)

The corresponding eigenvalues are �1 = 0 and �2 = 1 � � + �(n � 1)(R0�).
Here �2 is the largest eigenvalue in absolute value. Thus the system is stable if
j�2j < 1, this is the condition stated in the proposition.
Leading example. Here R0�) = � 1

2 substituting this in equation (14) gives,
after some simpli�cation

n <
4� �
�

: (16)

Meaning that an economy with as much Cournot �rms as imitators(� = 1
2 ) is

stable if n < 7. Next to that as found earlier, an economy with only cournot
�rms (� = 1) is stable if n < 3. Furthermore, an economy where close to all
�rms use the imitation heuristic, but some Cournot �rms exist (� close to zero),
the economy is always stable.

3.2 Rational vs. Imitation �rms

In this section we focus on the dynamics when there is competition between
rational and imitation �rms. Remember that we will model this heterogeneity
under theory 2 since this makes the dynamics analytically tractable. We set the
fraction of rational �rms equal to �. A fully rational �rm is assumed to know
the fraction of imitation �rms. Moreover, it knows exactly how much all �rms
will produce. However, we assume that it does not know the composition of
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�rms in its market (or has to make a production decision before observing this).
The rational quantity dynamics therefore have the following structure

qR = Argmax
qi

E[P (qi +Q�i)qi � C(qi)]:

It forms expectations over all possible mixtures of heuristics resulting from ran-
domly drawing n� 1 other players from a large population, of which each with
chance � is a rational �rm too, and with chance 1� � is an imitator. Rational
�rm i therefore chooses quantity qi such that his objective function, its own
expected utility

URt (qi;tjqRt ; qIt ; �) =
n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�k[P ((n�1�k)qIt+kqRt +qt;i)qt;i�C(qt;i)];

(17)
is maximized given the production of the other players and the population frac-
tions. Here qRt is the symmetric output level of all of the other rational �rms in
period t, and qIt is the output level of all of the imitation �rms. The �rst order
condition for an optimum is characterized by equality between marginal cost an
expected marginal revenue. Typically, marginal revenue in the realized market
will di¤er from marginal costs.
Given the value of qIt and the fraction �, all rational �rms coordinate on the

same output level qRt . This gives the �rst order condition

�URt (qi;tjqRt ; qIt ; �)
�qi;t

= 0;

which equals to:

n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�k�

[P ((n� 1� k)qIt+(k + 1)qRt ) + qRt P 0((n� 1� k)qIt + (k + 1)qRt )� C 0(qRt )] = 0:
(18)

Let the solution to equation (18) be given by qRt = HR(qIt ; �), the full system
of equations is thus given by

qRt+1 = HR(qIt+1; �) = HR(�qRt + (1� �)qIt ; �)
qIt+1 = �qRt + (1� �)qIt :

(19)

It is easily checked that if the imitators play the Cournot-Nash equilibrium
quantity q�, or if all �rms are rational, the rational �rms will play the Cournot-
Nash equilibrium quantity, that is HR(q�; �) = q�, for all � and HR(qI ; 1) = q�

for all qI . Moreover, if a rational �rm is certain it will only meet imitation
�rms (that is � = 0), it plays a best response to the currently average played
quantity, that is HR(qIt ; 0) = R((n� 1)qIt ), for all qIt . In the remainder we will
denote the partial derivatives of HR(q; �) with respect to q and � by HR

q (q; �)

and HR
� (q; �) respectively.
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Proposition 2 The Cournot-Nash equilibrium, where all �rms produce the Cournot-
Nash quantity (q�; q�), is a locally stable �xed point for the model with exogenous
fractions of rational and imitation �rms if and only if

j�Hq(q�; �) + 1� �j < 1 (20)

Proof. In order to determine the local stability of the equilibrium (q�; q�)
where all �rms produce the Cournot-Nash quantity, we need to determine the
eigenvalues of the Jacobian matrix of system (19), evaluated at the equilibrium.
It can be shown that this Jacobian matrix is given by

J jq�;q� =
�
�Hq(q

�; �) (1� �)Hq(q
�; �)

� 1� �

�
; (21)

which has eigenvalues �1 = �Hq(q
�; �) + 1 � � and �2 = 0. Consequently the

system is locally stable when j�1j < 1, this is exactly the condition stated.
Leading example. In the leading example the implicit function de�ning qRt
(Eq. (18)) when using that

n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�k = 1 and

n�1X
k=0

�
n� 1
k

�
�k(1� �)n�1�kk = (n�1)�

boils down to

qRt+1 = HR(qIt+1; �) =
a� c

b(2 + (n� 1)�) �
(n� 1)(1� �)
2 + (n� 1)� (�q

R
t + (1� �)qIt ):

The system of equations for the leading example is given by

qRt+1 = HR(qIt+1; �) =
a� c

b(2 + (n� 1)�) �
(n� 1)(1� �)
2 + (n� 1)� (�q

R
t + (1� �)qIt )

qIt+1 = �qRt + (1� �)qIt
(22)

The eigenvalues of this system are given by �1 = 0 and �2 = 1��� (n�1)(1��)�
2+(n�1)� ,

thus the system is stable if j�2j < 1. Since 0 � (n�1)(1��)�
2+(n�1)� < 1; this stability

condition always holds and the economy is always stable in the linear speci�ca-
tion.
In Figure 1 this is graphically shown.

4 Evolutionary competition between two heuris-
tics

In this Section we develop an evolutionary version of the model outlined in
Section 3, i.e. relaxing the assumption that � is �xed. As before in ever period
t, n �rms play the n-player Cournot game. We now assume that the fractions
of �rms using a heuristic � evolves over time according to a general monotone

13



selection dynamic, capturing the idea that heuristics that perform relatively
better are more likely to spread through the population as explained in Section
2.3, Eq. (10), here it is explained that future fractions depend on current
fractions and current �tness.
Under the assumption of random interactions, the �tness of heuristic k is

determined by averaging the payo¤s from from each interaction with weights
given by the chance of that speci�c state minus the information cost of using
the heuristic. Denoting with �t the expected payo¤vector in period t, its entries
- individual payo¤ or �tness in biological terms - of strategy 1 is given by:

�1;t = F (q1;t; q2;t; �t) =

n�1X
k=0

(n� 1)!
k!(n� 1� k)!�

k
t (1� �t)n�1�kP ((k + 1)q1;t + (n� 1� k)q2;t)q1;t � C(q1;t);

(23)

and with expected pro�ts for heuristic 2 given by �2 = F (q2; q1; 1 � �). If
the population of �rms and the number of groups of n �rms drawn from that
population are large enough, average pro�ts will be approximated well by these
expected pro�ts, which we will use therefore as a proxy for average pro�ts from
now on.
There might be a substantial di¤erence in sophistication between di¤erent

heuristics. As a consequence some heuristics may require more information or
e¤ort to implement than others. Therefore we allow for the possibility that
heuristics involve information cost Ck � 0, that may di¤er across heuristics.
Fitness of a heuristic is then given by the average pro�ts generated in the game
minus the information costs, Uk = �k � Ck. We only use the realized pro�t to
determine the �tness measure of a behavioural rule. The �tness measure can be
generalized by weighting the utility of the pastM periods, according to Tuinstra
(1999) this yields similar results. We assume that the above �tness measures
Uk are publicly observable.
Having the �tness measure we are ready to introduce the population dynam-

ics. Let the fraction of �rms using the �rst heuristic be given by � in period t.
This fraction evolves endogenously according to an evolutionary dynamic which
is an increasing function in the di¤erence between the current �tness of the two
heuristics and current fraction, that is

�t+1 = K(U1;t � U2;t) = K(�U1;t):

The map K : R! [0; 1] is a continuously di¤erentiable, monotonically increas-
ing function with K(0) = 1

2 , K(x) +K(�x) = 1, meaning that it is symmetric
around x = 0, limx!�1K(x) = 0 and limx!1K(x) = 1
In the following two sections we will derive two dynamical versions of the two

models discussed in Section 3 and investigate their stability. First we investigate
the stability of the Cournot-Nash equilibrium for the model with endogenous
fractions of Cournot and imitation �rms and second we investigate the stability
of the Cournot-Nash equilibrium for the model with endogenous fractions of
rational and imitation �rms.
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4.1 Cournot versus Imitation �rms

The dynamics in this section consists of three equations, two equations de-
scribing the quantity dynamics: the production of the Cournot �rms and the
production of the imitation �rms. Next to that we need one equation to de-
scribe the dynamics of the population fraction. The population and quantity
dynamics look like the following system of three equations:

qCt+1 = R((n� 1)(�tqCt + (1� �t)qIt ));
qIt+1 = �tq

C
t + (1� �t)qIt

�t+1 = K(�Ut);

(24)

where �Ut = UC;t � UI;t: Note that this is a 3-dimensional dynamical system
which dimensions cannot be reduced. Furthermore, the Cournot-Nash equilib-
rium quantity q� is the unique equilibrium quantity of the complete dynamical
system. Let �� be the unique equilibrium fraction such that �� = K(�C).
Without specializing the population dynamics K(�) we have the result as stated
in the proposition below.

Proposition 3 The Cournot-Nash equilibrium (q�; q�; ��) is a locally stable
�xed point for the model with endogenous fractions of Cournot and imitators
where all �rms produce the Cournot-Nash quantity, �rms if and only if

��R((n� 1)q�)(n� 1)� �� > �2: (25)

Proof. It can easily be shown that the Jacobian matrix of system 24,
evaluated at the equilibrium (q�; q�; ��) is given by

J jq�;q�;�� =

0B@(n� 1)�
�R0�) (n� 1)(1� ��)R0�) 0

�� 1� �� 0

J31 J32
�K(�Ut)

��t

���
q�;q�;��

1CA : (26)

The eigenvalues of this Jacobian matrix are, independently of J31 and J32 given
by

�1 = ��R((n�1)q�)(n�1)+���1; �2 =
�K(�Ut)

��t

����
q�;q�;��

and �3 = 0: (27)

To our best knowledge of possible population dynamics �K(�Ut)��t
is positive but

smaller than 1. This holds for all population dynamics discussed in Section 2.3.
Therefore, for the system to be stable we need

��R((n� 1)q�)(n� 1)� �� > �2;

which is exactly the condition stated in the proposition.
Note that this is the same condition we derived in Section 3.1.1 where we

�xed �.
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Leading example. In the equilibrium, when all �rms produce the same
quantity, pro�ts are equal and therefore the equilibrium fraction simpli�es to
�� = K(�C). The equilibrium quantities are given by q�. Here R0�) = � 1

2 ,
�lling this in equation (25) gives the stability condition for the leading example.
Thus the equilibrium (q�; q�; ��) is stable when n < 4���

�� .
In Figure 2 the model is simulated under Logit-dynamics with intensity of

choice parameter �, see Brock and Hommes (1997). Panel (a) depicts a period-
doubling route to chaotic quantity dynamics as the number of �rms n increases.
The �rst period-doubling bifurcation is for n = 7 as calculated analytically.
Panel (b) displays oscillating time series of produced quantity by the Cournot
and imitation �rms and the equilibrium quantity fraction q�. As one can see
the Cournot quantities are �uctuating more than the imitation quantities. The
stabilizing e¤ect of the imitation �rms is here clearly visible, when Cournot
�rms produce more (less) then the Cournot-Nash equilibrium quantity, the im-
itation �rms produce less (more) than the Cournot-Nash equilibrium quantity
and therefore decrease the aggregated deviation from the equilibrium. Panel (c)
displays the resulting Cournot pro�t di¤erential �C � �I . Panel (d) displays
the resulting oscillating time series of the Cournot and imitation fractions. In
Panel (e) a phase portrait is shown for the Cournot heuristic whereas in Panel
(f) a phase portrait for the imitation heuristic is shown. In Panel (g) the largest
Lyapunov exponent for an increasing number of �rms is shown. Game and be-
havioural parameters are equal set to: n = 10, a = 17, b = 1, c = 1, CC = 0,
CI = 0, � = 0:05. Initial conditions are set equal to: qC0 = 0:8, qI0 = 0:8,
�0 = 0:5 When the evolutionary pressure increases, the system evolves to an
equilibrium di¤erent from the Cournot-Nash equilibrium where the imitation
�rms produce more than the Cournot-Nash equilibrium whereas the Cournot
�rms produce less. Imitation pro�ts are therefore much higher and as a conse-
quence the complete population switches to the imitation heuristic.
The bifurcation diagram is re-plotted in Fig. 3 under the same game and

behavioural parameters and initial conditions, the only di¤erence is that now
� = 3.
When 1:7 < n < 2:8 the imitation �rms produce more then the Cournot-

Nash equilibrium quantity while the Cournot �rms produce less. This results in
higher pro�ts for the imitators and therefore the complete populations switches
to imitators (� = 0). When 2:8 � n � 3:2 all �rms produce the Cournot-Nash
equilibrium quantity again, therefore pro�ts and thus fractions are equal. When
n > 3:2 The imitation �rms produce again more then the equilibrium quantity
while the Cournot �rms produce less, exept when n is close to 3.65, then all
�rms produce the Cournot-Nash equilibrium quantity. Finally, when n > 5:6
the imitation �rms produce so much that the Cournot �rms decide to produce
nothing (qC = 0).

4.2 Rational vs. Imitation �rms

As in the previous Section we need a 3-dimensional system to describe the
dynamics of the model. The rational �rms produce each period such that their
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expected pro�t is maximized whereas an imitator produces in the next period
the currently average played quantity.
The rational quantity dynamics therefore have the following structure

qRt = Argmax
qi

E[P (qi;t +Q�i;t)qi � C(qi;t)]:

It forms expectations over all possible mixtures of heuristics resulting from ran-
domly drawing n� 1 other players from a large population, of which each with
chance �t is a rational �rm too, and with chance 1� �t is a imitator. Rational
�rm i therefore chooses quantity qi such that his objective function, its own
expected utility

URt (qi;tjqRt ; qIt ; �t) =
n�1X
k=0

�
n� 1
k

�
�kt (1� �t)n�1�k[P ((n�1�k)qIt+kqRt +qt;i)qt;i�C(qt;i)];

(28)
is maximized given the production of the other players and the population frac-
tion. Here qRt is the symmetric output level of each of the other rational �rms
in period t, and qIt is the output level of each of the imitator �rms in period t.
The �rst order condition for an optimum is characterized by equality between
marginal cost an expected marginal revenue.
Given the value of qIt and the fraction �t, all rational �rms coordinate on

the same output level qRt . This gives the �rst order condition

�URt (qi;tjqRt ; qIt ; �t)
�qi;t

= 0;

which equals to

n�1X
k=0

�
n� 1
k

�
�kt (1� �t)n�1�k�

[P ((n� 1� k)qIt+(k + 1)qRt ) + qRt P 0((n� 1� k)qIt + (k + 1)qRt )� C 0(qRt )] = 0:
(29)

Let the solution to equation (29) be given by qRt = HR(qIt ; �t), the full system
of equations is thus given by

qRt+1 = HR(qIt+1; �t+1)

qIt+1 = �tq
R
t + (1� �t)qIt

�t+1 = K(�Ut):

(30)

where�Ut = URt �U It . It is easily checked that if the imitators play the Cournot-
Nash equilibrium quantity q�, or if all �rms are rational, then the rational �rms
will play the Cournot-Nash equilibrium quantity, that is HR(q�; �) = q�, for
all � and HR(qI ; 1) = q� for all qI . Moreover, if a rational �rm is certain it
will only meet imitation �rms (that is � = 0), it plays a best response to the
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currently average played quantity, that is HR(qIt ; 0) = R((n� 1)qIt ), for all qIt .
In the remainder we will denote the partial derivatives of HR(q; �) with respect
to q and � by HR

q (q; �) and H
R
� (q; �) respectively.

Proposition 4 The Cournot-Nash equilibrium (q�; q�; ��) is a locally stable
�xed point for the model with endogenous fractions of rational and imitation
�rms, where all �rms produce the Cournot-Nash quantity, if and only if

j��Hq(q
�; ��) + 1� ��j < 1 (31)

Proof. Since a dynamical system can only depend on lagged variables,
we substitute the second and third equation into the �rst. This gives us the
following system that depends only on lagged variables.

qRt+1 =  1 = HR(�tq
R
t + (1� �t)qIt ;K(�URt ))

qIt+1 =  2 = �tq
R
t + (1� �t)qIt

�t+1 =  3 = K(�URt ):

(32)

In the equilibrium all �rms produce the Cournot-Nash quantity q�, therefore
pro�ts are equal, hence the equilibrium fraction is given by �� = K(�C). In
order to determine the local stability of the equilibrium (q�; q�; ��) where all
�rms produce the Cournot-Nash quantity, we need to determine the eigenvalues
of the Jacobian matrix of system (19), evaluated at the equilibrium.
The partial derivatives of  2 with respect to qRt , q

I
t and �t, evaluated at the

equilibrium are ��, 1� �� and 0 respectively.
Next, let us determine the partial derivatives of  3 with respect to qRt , q

I
t

and �t, respectively. To that end, note that we can write the pro�t di¤erential
as

�URt = �
R
t ��It � C =

n�1X
k=0

Ak(�t)Dk(q
R
t ; q

I
t ; �t)� C;

with Ak(�t) =
�
n�1
k

�
�kt (1� �t)n�1�k, which does not depend upon qR and qI ,

and

Dk(q
R
t ; q

I
t ; �t) =P ((k + 1)q

R + (n� 1� k)qI)qR � C(qR)
� [P (kqR + (n� k)qI)qI � C(qI)];

(33)

which depends upon �t through q
R
t = H(qIt ; �t). Note that Dk(q

R
t ; q

�; �t) = 0,
moreover the partial derivatives of Dk(q

R
t ; q

I
t ; �t), evaluated at the equilibrium

(q�; q�; ��) are given by

�Dk(q
R
t ; q

I
t ; �t)

�qRt

����
(q�;q�;��)

= [P 0�)q� + P (Q�)� C 0�)]Hq(q
�; ��) = 0;

�Dk(q
R
t ; q

I
t ; �t)

�qIt

����
(q�;q�;��)

= �[P 0�)q� � P (Q�) + C 0�)] = 0;

�Dk(q
R
t ; q

I
t ; �t)

��t

����
(q�;q�;��)

= [P 0�)q�P (Q�)� C 0�)]H�(q
�; ��) = 0:
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The second equalities follows from the fact that P 0�)q� + P (Q�) � C 0�) = 0 is
the �rst order condition of any �rm in a Cournot-Nash equilibrium. Further-
more Dk(q

�; q�; �) = 0 for all � by the �rst order condition for a Cournot-Nash
equilibrium. Using this it follows immediately that:

� 3

�qRt

����
(q�;q�;��)

= K 0(�C) ��Ut
�qRt

����
(q�;q�;��)

= K 0(�C)
n�1X
k=0

Ak(�
�)
�Dk(q

R
t ; q

I
t ; �t)

�qRt

����
(q�;q�;��)

= 0

(34)

and

� 3

�qIt

����
(q�;q�;��)

= K 0(�C) ��Ut
�qIt

����
(q�;q�;��)

= K 0(�C)
n�1X
k=0

Ak(�
�)
�Dk(q

R
t ; q

I
t ; �t)

�qIt

����
(q�;q�;��)

= 0

(35)

and

� 3

��t

����
(q�;q�;��)

= K 0(�C) ��Ut
��t

����
(q�;q�;��)

= K 0(�C)
n�1X
k=0

[Ak(�
�)
�Dk(q

R
t ; q

I
t ; �t)

��t

����
(q�;q�;��)

+
�Ak(�)

��t
Dk(q

R�
; qI

�

t ; �
�)]

= 0:

(36)

This leaves us to examine the partial derivatives of  1 with respect to qRt ,
qIt and �t, evaluated at the equilibrium.

� 1

�qRt

����
(q�;q�;��)

= ��HR
q (q

�; ��) +
�K(�Ut)

�qRt
H�(q

�; ��)

= ��HR
q (q

�; ��)

(37)

and

� 1

�qIt

����
(q�;q�;��)

= (1� ��)HR
q (q

�; ��) +
�K(�Ut)

�qIt
H�(q

�; ��)

= (1� ��)HR
q (q

�; ��)

(38)

and
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� 1

��t

����
(q�;q�;��)

= (q� � q�)HR
q (q

�; ��) +
�K(�Ut)

��t
H�(q

�; ��)

= 0

(39)

Therefore the Jacobian matrix, evaluated at the equilibrium is given by

J jq�;q�;�� =

0@��HR
q (q

�; ��) (1� ��)HR
q (q

�; ��) 0
�� 1� �� 0
0 0 0

1A : (40)

Which has eigenvalues �1 = �Hq(q�; ��) + 1 � ��, �2 = 0 and �3 = 0.
Consequently the system is locally stable when j�1j < 1, this is exactly the
condition stated in proposition 4. Note again the similarity with the condition
in Section 3 where we �xed the fraction �.
Leading example. Since the stability condition is the similar to the condition
derived in Section 3.2, the equilibrium (q�; q�; ��) is stable for all n in this linear
speci�cation.

5 Rational vs. Cournot vs. Imitation

In this section we combine the ideas that we gathered in Section 4. We will
investigate the dynamics when the three heuristics discussed before compete.
As before every round n �rms are drawn from a large pool of �rms to play
the one-shot Cournot game. From this large pool of �rms a fraction �Rt plays
according to the rational strategy in period t, a fraction �Ct plays according to
the Cournot heuristic in period t and consequently the fraction of imitators in
period t is determined by 1� �Rt � �Ct . As in Section 4 the �tness of a heuristic
is determined by the average payo¤ minus the information cost of using that
heuristic. Again the average pro�ts will be approximated by the expected pro�ts
but in contrast to Section 4 the distribution of states now follows a multinomial
distribution instead of a binomial distribution. In general the average pro�t
of a �rm producing q1 and competing with other �rms that produce either
q2 or q3 given the fractions �1 and �2 is stated below, in this average pro�t
approximation the pro�t in each state is weighted by the chance of this state.

�1;t = F (q1;t; q2;t; q3;t; �1;t; �2;t) =X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�k11;t�
k2
2;t(1� �1;t � �2;t)n�k1�k2�1� (41)

P ((k1 + 1)q1;t + k2q2;t + (n� 1� k1 � k2)q3;t)q1;t � C(q1;t);

The summation is over all possible combinations of k1 and k2, which stand
for the number of other �rms producing q1 and q2 respectively, that is: � =
fk1; k2 2 I2 : 0 � k1 � n � 1; 0 � k2 � n � 1; 0 � k1 + k2 � n � 1g: Expected
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pro�ts for heuristic 2 in period t are given by F (q2;t; q1;t; q3;t; �2;t; �1;t), expected
pro�ts for heuristic 3 in period t are given by F (q3;t; q2;t; q1;t; 1��1;t��2;t; �2;t).
The complete dynamical system consists of �ve equations, three for the quan-

tity dynamics and two to describe how the fractions evolve. As in all previous
sections, the Cournot �rms play in the next period a best-response to the current
aggregated output of the others, imitators play in the next period the average
produced quantity by the others in the current period. Rational players produce
every period the quantity that maximizes expected payo¤ given the fractions
and production plans of all other �rms (imitators, Cournot players but rational
players too). The rational �rms produce expectations over all possible mixtures
of heuristics resulting from randomly drawing the n� 1 other players from the
large population of �rms. In this setting the rational objective function, its own
expected utility is of the following form:

URt (qi;tjx) =
X
�

fk1;k2(n� 1; �R; �C)�

P (k1q
R
t + k2q

C
t + (n� 1� k1 � k2)qIt + qi;t)qi;t � C(qi;t);

(42)

with fk1;k2(n� 1; �R; �C) =
(n�1)!

k1!k2!(n�k1�k2�1)!�
R
t
k1�Ct

k2(1� �Rt � �Ct )n�k1�k2�1

and x = qRt ; q
I
t ; q

C
t ; �

R
t ; �

C
t . The �rst order condition for an optimum of (42) is

characterized by equality between marginal cost an expected marginal revenue.
Given the value of qCt qIt �

R
t �Ct , all rational �rms coordinate on the same

output level qRt . Di¤erentiating equation (42) with respect to qi;t gives the �rst
order condition, which is equal for all rational �rms. This �rst order condition
is given by:

�URt (qi;tjx)
�qi;t

= 0

which equals to: X
�

fk1;k2(n� 1; �R; �C)�

[P ((k1 + 1)q
R
t + k2q

C
t + (n� 1� k1 � k2)qIt )+

P 0((k1 + 1)q
R
t + k2q

C
t + (n� 1� k1 � k2)qIt )qRt � C 0(qRt )] = 0 (43)

Let the solution to this be given by qRt = HR(qCt ; q
I
t ; �

R
t ; �

C
t ). The system of

quantity dynamics is thus given by

qRt+1 = HR(qCt+1; q
I
t+1; �

R
t+1; �

C
t+1)

qCt+1 = R((n� 1)(�Rt qRt + �Ct qCt + (1� �Rt � �Ct )qIt )
qIt+1 = �Rt q

R
t + �

C
t q

C
t + (1� �Rt � �Ct )qIt

(44)

Note that rational player plays such that expected marginal revenue equals mar-
ginal cost at t+ 1 and a Cournot �rm plays such that its marginal revenue (of
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period t) equals marginal cost (at period t). Therefore the Cournot heuristic is
a lagged version of the rational heuristic if and only if

P 0RqR + �CqC + (1� �R � �C)qI) + qC) =X
�

fk1;k2(n� 1; �R; �C)P 0((k1 + 1)qR + k2qC + (n� 1� k1 � k2)qI): (45)

Thus the Cournot heuristic is only a lagged version of the rational heuristic if the
inverse demand is linear. In this speci�c case the analysis become easier because
this gives the possibility to lower the dimension of the dynamical system.
It is easily checked that if the imitation and Cournot �rms play the Cournot-

Nash equilibrium quantity q�, or if all �rms are rational, the rational �rms will
play the Cournot-Nash equilibrium quantity, that is HR(q�; q�; �Rt ; �

C
t ) = q�,

for all �R and �C and HR(qCt+1; q
I
t+1; 1; 0) = q� for all qC , qI . In the remain-

der we will denote by HR
qR , H

R
qC , H

R
qI , H

R
�R and H

R
�C the partial derivatives of

HR(qC ; qI ; �R; �C) with respect to qR, qC , qI , �R and �C respectively, evalu-
ated at the equilibrium (q�; q�; q�; �R

�
�C

�
), which we will denote by x� in the

remainder of this chapter for notational convenience.
Now that we have the quantity dynamics we can turn to the population dy-

namics. These are related to the population dynamics from Section 4 but di¤er
signi�cantly since we are in a three heuristic environment now. The population
dynamics, as in Section 4, depend on relative �tness. Let the fraction dynamics
be given by

�R;t+1 = KR(�URt ;�U
C
t )

�C;t+1 = KC(�URt ;�U
C
t ):

(46)

Where �Rt+1is the fraction of rational �rms in period t + 1 whereas �
C
t+1 is the

fraction of Cournot �rms in that period. With �URt = �
R
t �CR�(�Ct �CC) we

denote the di¤erence in average �tness of the rational and the Cournot heuristic
and with �UCt = �Ct � CC � (�It � CI) we denote the di¤erence in average
�tness of the Cournot and the imitation heuristic. Note that KR and KC are
R2 ! [0; 1] are continuously di¤erentiable functions where the di¤erence in
�tness of the rational and Cournot heuristics and the di¤erence in �tness of the
Cournot and imitation heuristic are used as input. The di¤erence in �tness of
the rational and imitation heuristic is not used as an input variable since this
information is captured implicitly in the other two di¤erences. Note that KR

is a monotonically increasing function in the �rst and second element whereas
KC is decreasing in the �rst element but increasing in the second element.
Furthermore, KR(0; 0) = KC(0; 0) = 1

3 . In the remainder of this chapter we
denote KR

1 and KR
2 the partial derivatives of KR with respect to the �rst and

the second element respectively and with KC
1 and K

C
2 the partial derivatives of

KC with respect to the �rst and the second element respectively.
Now that we have the quantity and population dynamics, we know the full
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system of equations. The full system is given by:

qRt+1 = �1 = HR(�2; �3; �4; �5)

qCt+1 = �2 = R((n� 1)(�Rt HR(qCt ; q
I
t ; �

R
t ; �

C
t ) + �

C
t q

C
t + (1� �Rt � �Ct )qIt )

qIt+1 = �3 = �Rt q
R
t + �

C
t q

C
t + (1� �Rt � �Ct )qIt

�Rt+1 = �4 = KR(�URt ;�U
C
t )

�Ct+1 = �5 = KC(�URt ;�U
C
t ):

(47)

Since a dynamical system can only depend on lagged variables we substituted
�2; �3; �4; �5 into HR(�). In order to determine the local stability of the unique
equilibrium x�, we need to determine the eigenvalues of the Jacobian matrix
evaluated at that equilibrium x�.
It can easily be shown that the partial derivatives of �3 with respect to qR,

qC , qI , �R and �C , evaluated at the equilibrium are �R
�
, �C

�
, 1� �R� � �C�

, 0
and 0 respectively.
To determine the partial derivatives of �4 and �5 we need to determine the

partial derivatives of �URt and �U
C
t . In accordance to Section 4.2 we can write

the �rst pro�t di¤erential as

�UR =
X
�

Ak(�
R; �C)Dk(q

R
t ; q

C
t ; q

I
t ; �

R; �C)� CR + CC ;

with Ak1;k2(�
R
t ; �

C
t ) =

(n�1)!
k1!k2!(n�k1�k2�1)!�

R
t
k1�Ct

k2(1��Rt ��Ct )n�k1�k2�1, which
does not depend upon the produced quantities, and

Dk1;k2(q
R
t ; q

C
t ; q

I
t ; �

R
t ; �

C
t ) = P ((k1 + 1)q

R
t + k2q

C
t + (n� k1 � k2 � 1)qIt )qRt � C(qRt )

� [P (k1qRt + (k2 + 1)qCt + (n� k1 � k2 � 1)qIt )qCt � C(qCt )]:
(48)

Which depends upon �R and �C through qRt = HR(qCt ; q
I
t ; �

R
t ; �

C
t ). Note that

Dk1;k2(q
�; q�; q�; �Rt ; �

C
t ) = 0; 8 �R; �C . Next to that the partial derivatives of

Dk1;k2(x) evaluated at the equilibrium are given by

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

�qRt

����
x�
= [P 0�)q� + P (Q�)� C 0�)]HR

qR(x
�) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

�qCt

����
x�
= [P 0�)q� + P (Q�)� C 0�)](HR

qC (x
�)� 1) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

�qIt

����
x�
= [P 0�)q� + P (Q�)� C 0�)]HR

qI (x
�) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

��R

����
x�
= [P 0�)q� + P (Q�)� C 0�)]H�R(x

�) = 0

�Dk(q
R
t ; q

C
t ; q

I
t ; �

R; �C)

��C

����
x�
= [P 0�)q� + P (Q�)� C 0�)]H�C (x

�) = 0:

(49)
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Where the second equalities follow from the fact that P 0�)q�+P (Q�)�C 0�) = 0
is the �rst order condition of any �rm in a Cournot-Nash equilibrium. Using
this it follows immediately that the partial derivatives of �4 are given by:

��4

�qRt

����
x�
= KR

1 (C
C � CR; CI � CC) ��U

R

�qRt

����
x�
+KR

2 (C
C � CR; CI � CC) ��U

C

�qRt

����
x�

= 0

(50)

and

��4

�qCt

����
x�
= KR

1 (C
C � CR; CI � CC) ��U

R

�qCt

����
x�
+KR

2 (C
C � CR; CI � CC) ��U

C

�qCt

����
x�

= 0

(51)

and

��4

�qIt

����
x�
= KR

1 (C
C � CR; CI � CC) ��U

R

�qIt

����
x�
+KR

2 (C
C � CR; CI � CC) ��U

C

�qIt

����
x�

= 0

(52)

and

��4

��Rt

����
x�
= KR

1 (C
C � CR; CI � CC) ��U

R

��Rt

����
x�
+KR

2 (C
C � CR; CI � CC) ��U

C

��Rt

����
x�

= 0

(53)

and

��4

��Ct

����
x�
= KR

1 (C
C � CR; CI � CC) ��U

R

��Ct

����
x�
+KR

2 (C
C � CR; CI � CC) ��U

C

��Ct

����
x�

= 0:

(54)

Furthermore, the partial derivatives of �5 are given by

��5

�qRt

����
x�
= KC

1 (C
C � CR; CI � CC) ��U

R

�qRt

����
x�
+KC

2 (C
C � CR; CI � CC) ��U

C

�qRt

����
x�

= 0

(55)

and

��5

�qCt

����
x�
= KC

1 (C
C � CR; CI � CC) ��U

R

�qCt

����
x�
+KC

2 (C
C � CR; CI � CC) ��U

C

�qCt

����
x�

= 0

(56)
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and

��5

�qIt

����
x�
= KC

1 (C
C � CR; CI � CC) ��U

R

�qIt

����
x�
+KC

2 (C
C � CR; CI � CC) ��U

C

�qIt

����
x�

= 0

(57)

and

��5

��Rt

����
x�
= KC

1 (C
C � CR; CI � CC) ��U

R

��Rt

����
x�
+KC

2 (C
C � CR; CI � CC) ��U

C

��Rt

����
x�

= 0

(58)

and

��5

��Ct

����
x�
= KC

1 (C
C � CR; CI � CC) ��U

R

��Ct

����
x�
+KC

2 (C
C � CR; CI � CC) ��U

C

��Ct

����
x�

= 0:

(59)

The Jacobian of the system, evaluated at the equilibrium x� is thus given by

J jx� =

0BBBB@
HR
qR HR

qC HR
qI HR

�R HR
�C

J21 J22 J23 J24 J25
�R

�
�C

�
1� �R� � �C�

0 0
0 0 0 0 0
0 0 0 0 0

1CCCCA (60)

with
J21 = (n� 1)�R

�
HR
qRR

0�)

J22 = (n� 1)
�
�R

�
HR
qC + �

C�
�
R0�)

J23 = (n� 1)
�
�R

�
HR
qI + 1� �R

� � �C�
�
R0�)

J24 = (n� 1)
�
HR

��
x�
+ �R

�
HR
�R � q�

�
R0 ((n� 1)q�)

J25 = (n� 1)
�
HR

��
x�
+ �R

�
HR
�C � q�

�
R0 ((n� 1)q�) :

This Jacobian has very complicated eigenvalues which cannot be expressed in a
useful function, for this we have to look at the leading example.
Leading example. We know that the Cournot heuristic is a lagged version of
the rational heuristic in this leading example since the inverse demand function
is linear, therefore the dimension of the dynamical system can be reduced by
one. Note that only the Cournot production is a lagged version of the rational
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production. The Cournot pro�ts and resulting fractions are in general not lagged
rational pro�ts and fractions. The production plans of the system, are given by

qRt+1 = HR(xt) =
a� c

b(2 + (n� 1)�Rt+1)
� n� 1
2 + (n� 1)�Rt+1

(�Ct+1q
C
t+1 + (1� �Rt+1 � �Ct+1)qIt+1)

qCt+1 =
a� c
2b

� 1
2
(n� 1)(�Rt qRt + �Ct qCt + (1� �R � �C)qIt )

qIt+1 = �Rt q
R
t + �

C
t q

C
t + (1� �R � �C)qIt ;

(61)

where xt = (qCt ; q
I
t ; �

R
t ; �

C
t ). Furthermore, the average pro�t (Eq. (5)) boils in

the leading example down to

�Rt =F (H
R(xt); q

C
t ; q

I
t ; �

R
t ; �

C
t )

=(a� c)HR(xt)� b(HR(xt) + (n� 1)qIt )HR(xt)

� b
�
HR(xt)� qIt

�
(n� 1)�Rt HR(xt)� b(qCt � qIt )(n� 1)�Ct HR(xt);

(62)

using thatX
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�Rt
k1
�Ct

k2
(1� �Rt � �Ct )n�k1�k2�1 = 1;

X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�Rt
k1
�Ct

k2
(1� �Rt � �Ct )n�k1�k2�1k1 = (n� 1)�Rt ;

X
�

(n� 1)!
k1!k2!(n� k1 � k2 � 1)!

�Rt
k1
�Ct

k2
(1� �Rt � �Ct )n�k1�k2�1k2 = (n� 1)�Ct :

(63)

Remember that�Ct = F (qCt ;H
R(xt); q

I
t ; �

C
t ; �

R
t ) and�

I
t = F (qIt ; q

C
t ;H

R(xt); 1�
�Rt ��Ct ; �Ct ). For the population dynamics we use the Logit dynamics, as for ex-
ample discussed in Brock and Hommes (1997). The complete dynamical system
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in this leading example is thus given by 4

qCt+1 = �1(xt) =
1

2 + �R(n� 1)

�
a� c
2b

� 1
2
(n� 1)(�Ct qCt + (1� �R � �C)qIt )

�
qIt+1 = �2(xt) = �Rt �

1(x) + �Ct q
C
t + (1� �R � �C)qIt

�Rt+1 = �3(xt) =
e��U

R
t

e��U
R
t + 1 + e���U

C
t

�Ct+1 = �4(xt) =
e��U

C
t

e�(�U
R
t +�U

C
t ) + e��U

C
t + 1

:

(64)

This system has one unique equilibrium where all �rms produces the Cournot-
Nash quantity q�. Since production is equal at the equilibrium, pro�ts are
equal at the equilibrium. The equilibrium fractions are therefore a function of
the information costs and the evolutionary pressure, given by

�R
�
=

e�(C
C�CR)

e�(CC�CR) + 1 + e��(CI�CC)
and �C

�
=

e�(C
I�CC)

e�(CI�CR) + e��(CI�CC) + 1
:

The Jacobian of the system in the leading example evaluated at the equilib-
rium is therefore given by

J jx� =

0BBB@
� (n�1)�C�

2+�R�(n�1) � (n�1)(1��R���C�
)

2+�R�(n�1) J13 J14

�C
�
�
1� (n�1)�R�

2+�R�(n�1)

�
(1� �R� � �C�)

�
1� (n�1)�R�

2+�R�(n�1)

�
0 0

0 0 0 0
0 0 0 0

1CCCA ;

(65)
For the calculation of the eigenvalues J13 and J14 are irrelevant because the
third and fourth row contain only zeros. For general �R

�
and �C

�
the eigenval-

ues become very lengthy expressions which cannot be simpli�ed. Nevertheless,
because the rational heuristic uses much more information than the Cournot
and the imitation heuristic, we set the cost of this heuristic equal to CR > 0,
while we set the cost of the other heuristics equal to 0, without loss of gener-
ality. After this parameterization we can calculate the eigenvalues analytically.
The eigenvalues are a function of n and the the product of � and CR. The
eigenvalues are given by

�1 = �2 = �3 = 0 and �4(n;CR�) =
3eC

R� � neCR�

n+ 4eCR� + 1
4The population dynamics can alternatively be expressed as

�Rt+1 =
e�UR;t

e�UR;t + e�UC;t + e�UI;t

�Ct+1 =
e�UC;t

e�UR;t + e�UC;t + e�UI;t
;

which is a more common but equivalent expression.
The rational production plan is left out of the dynamical system because the Cournot

production plan is a lagged version of the rational production plan.
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For the system to be stable we need j�4(n;CR�)j < 1. Note that �4 is always
less than 1. Rearranging gives that the threshold number of �rms is given by

n <  (CR
�
�) =

7eC
R� + 1

eCR� � 1
(66)

Note that economically the number of �rms can only be an integer but mathe-
matically the number of �rms can be treated as a continuous variable.
From equation (66) we see that when information cost CR is close to zero,

the system is stable for all n. When CR = 1 and � = 3, as simulated below,

the equilibrium
�

a�c
b(n+1) ;

a�c
b(n+1) ;

e�3

e�3+2 ;
1

e�3+2

�
is stable when n < 7:42. When

n = 7:42, the system undergoes its �rst bifurcation. The largest eigenvalue is
equal to �1 at the bifurcation, indicating that the �rst bifurcation is a period-
doubling bifurcation. This is con�rmed by the simulations below.
The leading example is simulated in the Fig. 4. Panel (a) depicts the bi-

furcation diagram for increasing number of �rms n. The �rst period-doubling
bifurcation appears, as calculated analytically for n = 7:42. For n = 11:85, the
system undergoes a Hopf-bifurcation which creates highly non-linear dynamics.
For 13 � n � 14:4, the system is in a 10-cycle whereas for n > 14:4 the system
becomes chaotic again. Panel (b) displays oscillating time series of produced
quantity by the Cournot and imitation �rms and the equilibrium quantity frac-
tion q�. Since the rational quantity in period t+1 equals the Cournot quantity
in period t this time series is not included. Panel (c) displays the resulting
pro�ts. Note that �It > �Rt 8t and �It � �Ct 8t. Panel (d) displays the re-
sulting oscillating time series of the fraction fractions. Due to the information
cost the sophisticated rational �rms do not perform better than the Cournot
and imitation �rms resulting in low fractions of rational �rms. Moreover, since
the imitation pro�t is at least as high as the Cournot pro�t, the resulting im-
itation fraction is at least as high as the Cournot fraction. In Panel (e) the
largest Lyapunov exponent for increasing number of �rms is shown whereas in
Panel (f) the largest Lyapunov exponent for increasing � is shown. Game and
behavioural parameters are set equal to: n = 19, a = 17, b = 1, c = 1, CR = 1,
CC = 0, CI = 0, � = 3. Initial conditions are set equal to: qR0 = 0:3, q

C
0 = 0:1,

qI0 = 0:25, �R0 = 0:5, �C0 = 0:2. Last, �gure shows some attractors of the
evolutionary model for increasing evolutionary pressure, with (quasi-)periodic
motion just after the second bifurcation and breaking of the invariant circles into
a strange attractor as the number of �rms further increases. Similar �breaking of
the invariant circles�route to chaos appears for the rational and Cournot series.
tncation

Figure 5: Phaseplots (qI ; 1� �R � �C), for increasing evolutionary pressure.

6 Concluding Remarks

In this paper we have investigated and generalized the work of Hommes, Ochea
and Tuinstra (2011) on the stability of the Cournot-Nash equilibrium in a n-
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�rm, quantity-setting game. Hommes, Ochea and Tuinstra (2011) focus on
competition between the Cournot adjustment process and the Nash quantity and
competition between the Cournot adjustment process and rational production
plans. In this thesis focus lays on the the imitation rule in competition with the
Cournot and/or rational heuristics. We derive local stability conditions for our
evolutionary model and �nd that introducing heterogeneity in heuristics tends
to stabilize the dynamics, but chaotic behaviour is still very well possible.
In particular, with a linear inverse demand and constant marginal costs we

�nd the following. Theocharis (1960) found that the dynamics are stable for
n < 3. Hommes, Ochea and Tuinstra (2011) show that in the evolutionary
competition between Cournot and the Nash heuristic the dynamics are stable
for n < 5. Next to that Hommes, Ochea and Tuinstra (2011) show that in the
absence of information costs for the rational heuristic, the Cournot-Nash equilib-
rium is stable for any n � 2 when there is evolutionary competition between the
rational and the Cournot heuristic. If information cost are for the sophisticated
heuristic strictly positive, the Cournot-Nash equilibrium becomes unstable if
either the number of �rms n, or the evolutionary pressure, as measured by �,
increases.
When imitators compete with heterogeneous agents we found a similar re-

sult whereas in the case when imitators compete with either Cournot �rms or
rational �rms we found di¤erences namely, (i) in the case when Cournot �rms
compete with imitators we found that, in the absence of information costs, the
threshold on the number of �rms that changes the system from stable to unsta-
ble is 7, (ii) in the case when rational �rms compete with imitators we found
that the system is always stable, regardless of the information costs of the ratio-
nal heuristic, (iii), in the case when rational �rms, Cournot �rms and imitators
compete we found that the stability threshold on the number of �rms depends
on the evolutionary pressure and the stability of the cheapest heuristic(s). First,
if the evolutionary pressure increases, the threshold on the number of �rms for
the system to be stable decreases. Second, if the cheapest behavioural rule is
stable, the dynamics converge to a situation where most �rms use this behav-
ioural rule and all �rms produce the Cournot-Nash equilibrium quantity. Next,
if the cheapest heuristic is unstable, complicated endogenous �uctuations may
occur. In particular, when the evolutionary pressure is high. Note that the non-
linearity causing this erratic behaviour comes from the endogenously updating
of the fractions, because in our leading example the speci�cations were linear.
We decided to focus on the imitation, Cournot and rational heuristics, since

there is no theoretical study on the evolutionary competition between these
heuristics while there is experimental evidence that these heuristics are used in
practice (Huck (2002)) .
The main contribution of this paper to the literature is to a broader knowl-

edge of dynamical systems. This is to our best knowledge the �rst paper that
investigates the stability of a model where three behavioural rules compete. We
have used the Cournot oligopoly game, but in general any game with a continu-
ous action space could be used to get the main points across, which are: (i) the
importance for evolutionary game theory to consider games with a continuous

29



action space, (ii) the focus on evolutionary competition between behavioural
rules instead of competition between actions and (iii) the observation that en-
dogenous �uctuations are a generic feature of evolutionary models. Moreover,
this paper contributes to a better understanding of bounded rationality, with
this understanding better expectations can be made.
For future research it would be interesting to focus on other interaction

structures. Imagine that all �rms are all located elsewhere, and whereas in the
studied structure we assume that all �rms observe all pro�ts, in this setting
we could for example assume that it only observes the pro�t of the m closest
neighbors.
Other interesting extensions of this model are allowance of multiple equilibria

or the introduction of other behavioural rules that coordinate on a �non-Nash�-
equilibrium, such as the cartel solution or the Walrasian equilibrium.
Experimental research con�rms the �ndings in this thesis, making the results

robust. Huck (2002) found that quantities do not explode when the quantity dy-
namics is described by a combination of the Cournot and the imitation heuristic.
Since there are no information cost in Huck (2002), this result is in line with the
�ndings in Section 4. Moreover, Bosch-Domènech, A., and N.J. Vriend (2003)
�nd that the players do not rely more on imitation in more demanding envi-
ronments and explain the di¤erent output decisions as predominantly relate to
a general disorientation of the players, and more speci�cally to a signi�cant
decrease of best responses. This con�rms that the choice of an evolutionary dy-
namic based on pro�ts is justi�ed and that the investigated heuristics in Section
5 are observed in experiments.
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Figure 1: Largest eigenvalue for the model rational vs. imitation �rms. The
largest eigenvalue decreases when the number of �rms increases and when the
fraction of rational players increases. Since an economy consisting of only im-
itation �rms is neutrally stable, this model is stable for all combinations of �
and n.
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(a) Bifurcation diagram (qt; n)
(b) Time path of Cournot and

imitiation quantities

(c) Cournot pro�t di¤erential (d) Time path Cournot fraction

(e) Cournot phase plot (f) Imitation phase plot

Figure 2: Linear n-player Cournot game with endogenous fraction dynamics.
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Figure 3: Bifurcation diagram (qt; n) with � = 3
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(a) Bifurcation diagram (qt; n)
(b) Time path of Cournot and

imitiation quantities

(c) Cournot pro�t di¤erential (d) Time path Cournot fraction

(e) Largest Lyapunov
exponent (f) Largest Lyapunov exponent

Figure 4: Linear n-player Cournot competition between rational, Cournot and
imitation �rms with endogenous fraction dynamics.
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(a) phaseplot � = 2 (b) phaseplot � = 2:4

(c) phaseplot � = 2:65 (d) phaseplot � = 2:95

ion

35


