
Consistent Taxation for a Polluting Monopoly∗

Guiomar Martín-Herrán†and Santiago J. Rubio‡

May 11, 2017

∗The authors would like to thank participants at the 2016 International Symposium on Dynamic

Games and Applications (Urbino, Italy) for stimulating discussion and Franz Wirl for his interesting

comments. Guiomar Martín-Herrán gratefully acknowledges financial support from the Spanish Ministry

of Economics and Competitiveness under project ECO2014-52343-P and COST Action IS1104 “The EU

in the new economic complex geography: models, tools and policy evaluation.”Santiago J. Rubio also

gratefully acknowledges financial support from the Spanish Ministry of Economics and Competitiveness

under project ECO2013-45045-R, and Valencian Generality under project PROMETEO II/2014/054.
†Department of Applied Economics and IMUVa, University of Valladolid, Spain.
‡Department of Economic Analysis and ERI-CES, University of Valencia, Spain.

1



Abstract

This paper evaluates the effects of a limited regulatory commitment on the emission

tax paid by a polluting monopoly comparing two alternative equilibria of a policy (dif-

ferential) game: the stagewise feedback Stackelberg equilibrium (SFSE) and the Markov

perfect equilibrium with limited commitment (LCMPE). For both equilibria no commit-

ment for the entire time horizon is assumed. However, for the SFSE the regulator moves

first in each period whereas for the LCMPE in a first stage the regulator and the mo-

nopolist simultaneously choose the emission tax and abatement effort respectively, and

in a second stage the monopolist selects the output level. We find that the SFSE is not

intratime consistent, i.e. it is not time consistent for the game played in each period.

We also find that a limited commitment leads to lower taxation and abatement that

yield larger production and emissions and, consequently, a larger steady-state pollution

stock. Moreover, the increase of environmental damages because of the increase in the

pollution stock more than compensates the increase in consumer surplus and the decrease

in abatement costs resulting in a reduction of net social welfare when there is a limited

commitment.

Keywords: monopoly, limited commitment, emission tax, abatement, stock pollu-

tant
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1 Introduction

The characterization of the effi ciency-inducing tax rules for polluting firms with market

power was established by Benchekroun and Long (1998, 2002). In the first paper, the

authors show for a linear-quadratic case that there exists a stationary linear tax rule that

leads polluting oligopolists to implement the effi cient outcome. The authors propose a

three-step procedure. First, they assume that the government announces at the initial

period the tax rule that is applicable to all firms, at all times. Second, the regulated

market equilibrium is calculated as a Markov perfect Nash equilibrium. Finally, the

parameters of the linear tax rule are computed imposing the output strategy selected

by the firms to be equal to the effi cient strategy. The authors show that the equations

system defined by this condition has a unique solution and that the tax increases with

the pollution stock and could be negative for low levels of the stock if there are just a

few firms.

In Benchekroun and Long’s papers the only way to control emissions is reducing

production. In our paper, we extend the analysis of emission taxation for a polluting

monopoly to consider the possibility that the firm devotes resources to abatement activ-

ities. With the aim of characterizing the optimal tax rule under these circumstances, we

calculate a stagewise feedback Stackelberg equilibrium (SFSE) where the regulator is the

leader and the monopolist is the follower of the game. Following a dynamic programming

approach, the SFSE gives the leader only a stagewise first-mover advantage. In continuous

time, this translates into an instantaneous advantage at each moment of time (period).1

In our model, this equilibrium is time consistent in the sense defined in the seminal paper

by Kydland and Prescott (1977) and also satisfies subgame perfection. However, it is not

clear whether these properties of the SFSE eliminate or not the credible commitment

problem of the Stackelberg game played in each period. To complete the analysis of emis-

sion taxation we investigate this issue proposing a stronger definition of time consistency

that we call intratime consistency. We say that the optimal tax is intratime consistent if

1For a clear explanation of this type of feedback Stackelberg equilibrium, the interested reader can

consult the excellent book by Haurie et al. (2012). Several examples can be found in Long (2010).
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it is also time consistent for the Stackelberg game that the regulator and the monopolist

play in each period. To the best of our knowledge, this requirement has not been taken

into account in the previous literature. To check the intratime consistency of the SFSE,

we calculate a Markov perfect equilibrium with limited commitment (LCMPE) where the

regulator and the monopolist first simultaneously choose the emission tax and abatement

respectively, before the monopolist selects the production level.2

The results establish that the tax rule of the SFSE is not intratime consistent. Thus, if

the regulator is unable to commit in each period there exists an incentive to deviate from

the optimal tax rule corresponding to the SFSE. This means, at least in our model, that

the time consistency does not guarantee the intratime consistency although the opposite is

true. Moreover, as expected the tax rule does not implement the effi cient outcome. With

two control variables, production and abatement, two policy instruments are necessary

to induce the firm to act effi ciently. In other words, restricting to the analysis of emission

taxation we are placing our study in a second-best policy setting.

To advance in the analysis, we solve in the second part of the paper a linear-quadratic

(LQ) differential game for an end-of-the-pipe abatement technology. The comparison of

equilibria establishes that the steady state for the pollution stock with commitment is

lower than with limited commitment and consequently the steady-state emissions are

also lower.3 Therefore, a reduced commitment increases the accumulation of emissions in

the environment yielding larger damages at the steady state. Moreover, we find that the

tax rule with commitment gives larger taxes for all values of pollution stock lower than

the steady-state value of the pollution stock for the limited commitment equilibrium.

In order words, a reduced commitment moves down the tax rule used by the regulator.

In fact, it can lead to a change in the sign of the optimal policy converting a tax in a

2We would like to point out that when the regulator uses an emission tax to control emissions, a

minimum of commitment is required to influence the economic behavior of the firm. This minimum

requirement of commitment is given in our model by the fact that the production level is selected by the

firm after the tax has been chosen by the regulator. For this reason we call to this equilibrium a limited

commitment equilibrium.
3By commitment hereinafter we refer to the solution of the game given by the SFSE.
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subsidy.4

The welfare consequences of a limited commitment cannot be determined analytically

except when the initial pollution stock is zero. In this case, the comparison of the reg-

ulator’s value functions shows that net social welfare is lower with limited commitment

whereas net profits are larger. To complete the comparative analysis, we have developed

a numerical example that shows that at the steady state the production is lower and

the abatement larger for SFSE. This increases the consumer surplus and reduces the

abatement costs for a limited commitment. However, the increase in production (gross

emissions) and the decrease in abatement cause an increase in emissions that lead to

larger pollution stocks and environmental damages resulting finally in a fall of the net

social welfare. Nevertheless, it should be noticed that the numerical exercise also shows

that this negative effect on welfare diminishes with abatement costs and that for large

abatement costs both equilibria practically yield the same welfare level. Thus, our re-

search indicates that a limited commitment has no cost in welfare terms if the abatement

costs are large or reduces welfare if this is not the case. Then, we can conclude that

the commitment value defined as the difference between the welfare of the commitment

solution and the welfare of the solution with limited commitment is non negative.

1.1 Literature Review

The literature addressing the taxation of polluting firms with market power in a dynamic

framework includes only a few papers: Xepapadeas (1992), Kort (1996), Stimming (1999)

Feenstra et al. (2001) and Yanese (2009). All these papers except Yanase (2009) assume

4As in Benchekroun and Long (1998) we also find that the optimal tax with commitment increases

with the stock of pollution but that it is negative when the pollution stock is low. Nevertheless, we show

that if environmental damages are not very low the steady-state tax is positive. The subsidy operates to

correct the market power of the firm when this distortion is more important than the distortion caused

by the negative externality (pollution), i.e. when the pollution stock is low. However, for the limited

commitment equilibrium it cannot be discarded that a subsidy applies at the steady state. In a dynamic

model a subsidy is compatible with a positive abatement because this depends not only on the tax but

also on the shadow price of the pollution stock that defines along with the tax the marginal benefit of

abatement.
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that damages are caused by a flow pollutant and focus on the investment in abatement

technology. The environmental policy is exogenously determined and the research assesses

the effects of a stricter environmental policy and the comparison of taxes vs emission stan-

dards. However, in Yanese (2009) the environmental policy is endogenously determined.

The author examines a non-cooperative policy game between national governments in a

model of international pollution control of a stock pollutant in which duopolists compete

myopically in a third country and expense resources in abatement activities. The results

establish that an emission tax produces a more distortionary outcome than that produced

by a standard, i.e. it generates more pollution and lower welfare.

The literature on the time consistency of the environmental policy is much more abun-

dant. This issue has been studied in a competitive framework by Biglaiser et al. (1995),

Marsiliani and Renström (2000) and Abrego and Perroni (2002). Biglaiser et al. (1995)

following a differential game approach where competitive firms invest in an abatement

technology to reduce the emissions originated by a polluting input show that the first-

best tax, the Pigovian tax, is time consistent although this is not the case for tradable

permits. The authors focus on a flow pollutant and constant marginal damages. With

constant marginal damages, the first-best tax is constant and the strategic effect of the

investment vanishes what explains the time consistency of the Pigovian tax. The other

authors, however, find in different contexts that the time-inconsistency is a problem of

the environmental policy. In a framework of imperfect competition this issue has been

addressed by Petrakis and Xepapadeas (1999, 2003), Poyago-Theotoky and Teerasuwan-

najak (2002), Puller (2006) and more recently by Moner-Colonques and Rubio (2016).

All these papers study the effects of the lack of commitment for a flow pollutant in

a static model obtaining different results. According to these results, the government

commitment is not always welfare improving. They show that the effects of the time in-

consistency of the environmental policy on investment and welfare depend on the features

of the emission function, the degree of product differentiation and the policy instrument

used to control emissions. This paper extends the analysis of the time consistency of an

emission tax to cover the case of a stock pollutant.

Another strand of the literature has focused on the importance of commitment in a
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setting where a monopolistic upstream firm engages in R&D activities and sells abatement

technology to polluting downstream firms (see, among others Laffont and Tirole (1996),

Denicolò (1999), Requate (2005), Montero (2011) andWirl (2014)).5 Wirl (2014) develops

the analysis in a dynamic game solving a differential policy game between a monopoly

that provides a clean technology for a polluting competitive industry and a regulator

that uses an emission tax or emission permits to control a flow pollutant. The author

finds that although the monopoly can be enforced to price taking behavior, the first-best

policy is time inconsistent. The inability of the regulator to commit leads to too slow

and to too little expansion of the clean technology regardless of the instrument applied to

control pollution. In contrast with our model, in Wirl’s (2014) policy game the tax does

not depend on the investment and vice versa and consequently the stagewise feedback

Stackelberg equilibrium coincides with the Markov perfect Nash equilibrium. Thus, we

could say that the SFSE is intratime consistent but because moving first does not give

any strategic advantage to the regulator in his model.

Other papers with uncertainty or asymmetric information where environmental pol-

icy is compared under commitment and no commitment are Tarui and Polasky (2005),

Ulph and Ulph (2013) and D’Amato and Dijkstra (2015). Tarui and Polasky (2005)

and D’Amato and Dijkstra (2015) abstract for the market conditions where the polluting

firms operate assuming that the target of the firm is to minimize the abatement costs

plus the investment costs and regulation costs. Ulph and Ulph (2013) assume that a

representative firm maximizes consumer surplus.

Finally, we would like to point out that the problem of credible commitment in climate

policy has also been addressed by several scholars. A nice survey is Brunner at al.

(2012). More recently, Bertinelli et al. (2017), Gerlagh and Liski (2017) and Rezai

and van der Ploeg (2017) have studied the impact of commitment on climate policies in

different settings. Bertinelli et al. (2017) solves a differential game between two countries

with heterogeneous strategies to address the consequences of unilateral commitment.

5Golombek at al. (2010) consider that the supply of abatement equipment services are monopolistic

competitive. They show that if the government can optimally subsidize R&D today, there is no time

inconsistency problem.
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Gerlagh and Liski (2017) and Rezai and van der Ploeg (2017) analyze the consequences

of commitment in the setting of integrated assessment models. Gerlagh and Liski (2017)

find that commitment is not welfare improving.

The remainder of the paper is organized as follows. Section 2 presents the model.

Section 3 analyzes the stagewise feedback Stackelberg equilibrium and Section 4 the lim-

ited commitment Markov perfect equilibrium. In Section 5 we compare the two equilibria

for a linear-quadratic differential game to evaluate the effects of a limited commitment.

Section 6 offers some concluding remarks and points out lines for future research.

2 The Model

We consider a monopoly that faces a market demand represented by the decreasing

inverse demand function P (q(t)) where q(t) is the output at time t. The production

process generates pollution emissions, however the firm can devote resources to abatement

activities represented by w(t). In this case, both the emission and cost functions depend on

the output and abatement effort. The emission function is represented by s(q(t), w(t))

with ∂s/∂q positive and ∂s/∂w negative, and the cost function by C(q(t), w(t)) with

∂C/∂q and ∂C/∂w positive. The second-order partial derivatives are assumed to be

positive or zero. The focus of the paper is on a stock pollutant that evolves according to

the following differential equation

ẋ(t) = s(t)− δx(t) = s(q(t), w(t))− δx(t), x(0) = x0 ≥ 0, (1)

where x(t) stands for the pollution stock and δ > 0 for the decay rate of pollution. The

environmental damages are given by the function D(x(t)) that is assumed strictly convex.

Thus, the policy game we analyze in this paper is a differential game between a welfare

maximizing regulator and a profit maximizing monopolist. The regulator chooses the

level of the tax rate to apply on emissions and the monopolist chooses the abatement

effort and production. Finally, we would like to point out that the focus in this paper is

on a second-best emission tax. As is well known, since there are two control variables to

adjust because of the distortions that characterize a polluting monopoly, the regulator
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would need two instruments to implement the first-best or effi cient solution: a subsidy

per unit of production could be used to correct for market power and a tax on emissions

to correct for the pollution externality. However, we assume that the menu of policy

instruments the regulator can use is restricted to only one policy instrument, a tax on

emissions.

In the next section, we calculate the stagewise feedback Stackelberg equilibrium

(SFSE) and characterize the emission tax applied by the regulator when it moves first in

each period of the game. In Section 4 we compute the equilibrium of the game when the

regulator does not benefit from this strategic advantage.

3 The Stagewise Feedback Stackelberg Equilibrium

This equilibrium is based on the assumption that the regulator moves first in each period.

To find the regulator’s optimal policy, we apply backward induction, substituting the mo-

nopolist’s reaction function in the regulator’s Hamilton-Jacobi-Bellman (HJB) equation,

and computing the optimal strategy by maximizing the right-hand side of this equation.

The resulting outcome is a stagewise feedback Stackelberg solution, which is a Markov-

perfect equilibrium. For this kind of equilibria no commitment is required for the entire

temporal horizon. However, we would like to point out that in this case an intratime

commitment is assumed because the regulator is the leader of the policy game played in

each period.

The output selection occurs in the last stage. The monopolist chooses its output to

maximize the discounted present value of net profits

max
{q(t)}

∞∫
0

e−rt {P (q(t))q(t)− C(q(t), w(t))− τ(t)s(q(t), w(t))} dt, (2)

subject to differential equation (1) where r is the time discount rate and τ(t) the emission

tax. We assume that the firm acts strategically at this stage because it is aware that the

dynamics of the stock will be taken into account by the regulator to set up the tax.

The solution to this dynamic optimization problem must satisfy the following HJB
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equation

rV (x(t)) = max
{q(t)}

{P (q(t))q(t)− C(q(t), w(t))− τ(t)s(q(t), w(t))

+V ′(x(t))(s(q(t), w(t))− δx(t))} , (3)

where V (x(t)) stands for the maximum discounted present value of profits for the current

value, x(t), of the pollution stock.

From the first-order condition for the maximization of the right-hand side of the HJB

equation, we get6

P ′q + P =
∂C

∂q
+ (τ − V ′(x))

∂s

∂q
, (4)

where the left-hand side of the condition stands for the marginal revenue and the right-

hand side represents the marginal costs. These costs include the marginal cost of pro-

duction, the tax and the shadow price of the pollution stock. The latter is given by the

reduction in the present value of the firm’s profits because of an increase in the pollution

stock caused by an increase in production. Observe that the last two terms are multiplied

by the effect of an increase in production on emissions. Condition (4) implicitly defines

the dependence of the output with respect to the tax, abatement effort and pollution

stock: q(τ , w, x).

In a second stage, the firm selects the level of abatement that maximizes the present

value of net profits that can be written as follows

max
{w}

∞∫
0

e−rt {P (q(τ , w, x))q(τ , w, x)− C(q(τ , w, x), w)− τs(q(τ , w, x), w)} dt (5)

where q(τ , w, x) is implicitly defined by (4).7

From the first-order condition for the maximization of the right-hand side of the HJB

equation with respect to w taking into account condition (4), we get

∂C

∂w
= −(τ − V ′(x))

∂s

∂w
. (6)

6Time argument will be eliminated when no confusion arises.
7We could consider that both decisions output and abatement selections are taken simultaneously

but we have distinguished them to facilitate the comparison with the timing of the Markov perfect

equilibrium with limited committed.
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The left-hand side represents the marginal cost of abatement and on the right-hand side

appear the marginal benefits that includes the marginal reduction in taxes because of the

reduction in emissions caused by an increase in abatement that is given by the tax rate,

and the increase in the present value of the firm’s profits because of the reduction in the

stock caused by an increase in abatement. Notice that V ′(x) is a marginal cost when we

are considering an increase in production, and it stands for a marginal benefit when we

are evaluating an increase in abatement. The same occurs for the tax rate. Conditions

(4) and (6) implicitly define the firm’s strategies: q(τ , x) and w(τ , x).

In the first stage, the regulator selects the emission tax rate that maximizes net social

welfare defined as the sum of consumer surplus and monopoly profits plus tax revenues

minus environmental damages

max
{τ}

∞∫
0

e−rt
{∫ q

0

P (y)dy − Pq(τ , x) + π(q(τ , x), w(τ , x), τ)

+τs(q(τ , x), w(τ , x))−D(x)} dt,

where π stands for the firm profits. Notice that consumer expense and firm revenue on

one hand and firm tax expense and regulator tax revenue on the other hand, cancel out.

Therefore, this optimization problem can be rewritten as

max
{τ}

∞∫
0

e−rt
{∫ q

0

P (y)dy − C(q(τ , x), w(τ , x))−D(x)

}
dt. (7)

The solution to this dynamic optimization problem must satisfy the following HJB equa-

tion

rW (x) = max
{τ}

{∫ q

0

P (y)dy − C(q(τ , x), w(τ , x))−D(x)

+W ′(x)(s(q(τ , x), w(τ , x))− δx)} (8)

where W (x) stands for the maximum discounted present value of the net social welfare

for the current value, x(t), of the pollution stock.

From the first-order condition for the maximization of the right-hand side of the HJB

equation, we get(
P − ∂C

∂q
+W ′(x)

∂s

∂q

)
∂q

∂τ
−
(
∂C

∂w
−W ′(x)

∂s

∂w

)
∂w

∂τ
= 0. (9)
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Doing the expressions between parenthesis equal to zero the effi cient conditions are ob-

tained. However, these conditions are incompatible with conditions (4) and (6) that

characterize the maximization of the discounted present value of profits by the firm and

the SFSE is ineffi cient. As expected, the second-best policy does not implement the

effi cient outcome.

Conditions (4) and (6) can be rewritten as

P − ∂C

∂q
= (τ − V ′(x))

∂s

∂q
− P ′q,

and
∂C

∂w
= −(τ − V ′(x))

∂s

∂w
.

Eliminating P − ∂C/∂q and ∂C/∂w in (9) using these expressions yields(
−P ′q + (τ − V ′(x) +W ′(x))

∂s

∂q

)
∂q

∂τ
+ (τ − V ′(x) +W ′(x))

∂s

∂w

∂w

∂τ
= 0. (10)

Taking common factor gives

τ c =
− P
|η|

∂q
∂τ

∂s
∂q

∂q
∂τ
− ∂s

∂w
∂w
∂τ

− (W ′(x)− V ′(x)), (11)

where η is the price elasticity of demand and the superscript c stands for committed

equilibrium. Expression (11) is the dynamic version of the condition that characterizes

the second-best emission tax derived by Barnett (1980) for a flow pollutant. When the

firm has not market power, the price elasticity is infinite and the first-best emission

tax, the Pigouvian tax, is equal to the difference between the social shadow price of the

pollution stock, −W ′(x), and the private shadow price, −V ′(x). However, for a monopoly

the absolute value of the elasticity is positive and consequently the first term on the right-

hand side of (11) is negative provided that ∂q/∂τ is negative and ∂w/∂τ is positive and

then we can conclude that8

Proposition 1 The second-best emission tax with commitment is lower than the differ-

ence between the social and the private valuations of the pollution stock whenever the tax

reduces the gross and net emissions.
8Although these are the expected signs for these partial derivatives, they depend on the sign of cross

effects (cross second-order partial derivatives) of the cost and emission functions.
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Moreover, expressions (10) and (11) allow us to interpret condition (9). Notice that

according to (11), τ − V ′(x) + W ′(x) must be negative. Then, if the tax has a negative

impact on emissions and production, the first term in brackets in (10) must be positive

and consequently the first term between parenthesis in (9) must be positive and the second

term negative. Thus, the optimal tax balances the reduction in consumer surplus net of

the social shadow price of the pollution stock caused by the decrease in output induced

by the increase in the tax rate with the increase in welfare caused by the augmentation in

abatement provoked by the increase in the tax rate. This increase in welfare is explained

by the fact that at the equilibrium the marginal cost of abatement is lower that the social

shadow price of the pollution stock that represents the increase in the discounted present

value of welfare because of a decrease in the stock. Thus, when the abatement increases

the reduction in the social shadow price of the pollution stock more than compensated

the augmentation in abatement costs.

4 TheMarkov Perfect Equilibriumwith Limited Com-

mitment

With a reduced commitment, the regulator will choose the intratime consistent tax rate

after the firm has selected the level of abatement. This means that the monopolist

moves first in each period and that it could use this strategic advantage to influence the

environmental policy in its own interest. In this section, we compute the equilibrium of

this game to evaluate the consequences of the lack of commitment.

We assume as in the previous section that output selection occurs after the choice of

the tax and abatement. Thus, no changes occur at this stage with respect to the previous

game and the first-order condition (4) also characterizes the LCMPE. However, now in

the second stage is the regulator who selects the level of the tax rate that maximizes net

social welfare

max
{τ}

∞∫
0

e−rt
{∫ q

0

P (y)dy − C(q(τ , w, x), w)−D(x)

}
dt.
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where q(τ , w, x) is implicitly defined by the condition (4). Notice that with a limited

commitment the regulator cannot influence the abatement. The solution to this dynamic

optimization problem must satisfy the following HJB equation

rW (x) = max
{τ}

{∫ q

0

P (y)dy − C(q(τ , w, x), w)−D(x)

+W ′(x)(s(q(τ , w, x), w)− δx)} . (12)

From the first-order condition for the maximization of the right-hand side of the HJB

equation, we obtain the following expression(
P − ∂C

∂q
+W ′(x)

∂s

∂q

)
∂q

∂τ
= 0. (13)

The same condition can be directly derived from (9) adding the requirement that ∂w/∂τ =

0. Using (4), we can characterize the intratime consistent emission tax9

τnc =
− P
|η|
∂s
∂q

− (W ′(x)− V ′(x)). (14)

This condition can be directly derived from (11) for ∂w/∂τ = 0. The intratime consistent

emission tax is also lower than the difference between the social shadow price of the

pollution stock and the private shadow price because ∂s/∂q is negative. In this case this

result applies regardless the sign of the effect of the tax on the production and abatement.

Thus, we can conclude that

Proposition 2 The second-best emission tax with limited commitment is lower than the

difference between the social and the private valuations of the pollution stock.

When the regulator has a limited commitment, in the first stage, the firm selects the

abatement level that maximizes the discount present value of profits taking into account

the time evolution of the pollution stock.

max
{w}

∞∫
0

e−rt {P (q(w, x))q(w, x)− C(q(w, x), w)− τ(w, x)s(q(w, x), w)} dt

subject to differential equation (1) where q(w, x) and τ(w, x) are defined by (4) and (13).

9Where the superscript nc is used to represent the solution of the game with limited commitment.
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From the first-order condition for the maximization of the right-hand side of the HJB

equation and taking into account condition (4), we obtain

∂C

∂w
= −(τ − V ′(x))

∂s

∂w
− ∂τ

∂w
s, (15)

where ∂τ/∂w is the strategic effect that measures the influence that the firm can exert

on the environmental policy through the abatement.

Thus, comparing conditions (13) and (15) that characterizes the LCMPE with con-

ditions (6) and (9) that the SFSE must satisfied we can conclude that the two equilibria

will not coincide and that consequenlty

Proposition 3 The SFSE is not intratime consistent.

In other words, if the regulator is unable to commit in each period there is an incentive

to deviate from the optimal tax rule corresponding to the SFSE.

Condition (15) can be rewritten as follows

∂C

∂w
= V ′(x)

∂s

∂w
−
(
τ
∂s

∂w
+
∂τ

∂w
s

)
= V ′(x)

∂s

∂w
− ∂T

∂w
, (16)

where T = τs stands for the firm’s taxes.

When the firm chooses the abatement before the regulator sets up the tax, the firm

will use the abatement strategically to influence on its fiscal spending. Again the sign

of this strategic effect depends on the cross-effects of the cost and emission functions.

Nevertheless, we would like to highlight that the no coincidence of the two equilibria

and consequently our Proposition 3 does not depend critically on this strategic effect.

Suppose that ∂τ/∂w is zero, as it occurs in the LQ policy game we analyze below, then

condition (15) of the LCMPE coincides with condition (6) of the SFSE but the conditions

that characterize the regulator’s behavior are different yielding two different equilibria.

The intratime inconsistency of the SFSE occurs even if the firm cannot use its strategic

advantage to influence the environmental policy.
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5 The LQ Policy Game

The LQ differential game we analyze in this section is an extension of the LQ differential

game studied by Benchekroun and Long (1998) to include abatement activities. It consid-

ers a monopolist that faces a linear (inverse) demand function given by P (t) = a− q(t),

where P (t) is the price and q(t) is the output at time t. The production process gener-

ates pollution emissions. After an appropriate choice of measurement units we can say

that each unit of output generates one unit of pollution. The emissions can be reduced

without declining output if the monopoly employs an abatement technology. The abate-

ment technology is assumed to be the end-of-the-pipe type.10 For this type of abatement

technology the emission function is s(q(t), w(t)) = q(t)− w(t) where w(t) stands for the

emission reduction achieved operating the abatement technology. On the other hand, we

assume an additive and separable cost function C(q(t), w(t)) = cq(t) + γw(t)2/2. The

abatement technology has decreasing returns to scale, with the parameter γ measuring

the extent of such decreasing returns, and the production technology presents constant

returns to scale, with the parameter c standing for the marginal cost of production. In

this case, the stock of pollution follows the dynamic equation

ẋ(t) = s(q(t), w(t))− δx(t) = q(t)− w(t)− δx(t), x(0) = x0 ≥ 0. (17)

The disutility from environmental deterioration is given by the damage functionD(x(t)) =

dx(t)2/2, d > 0.

Next, we calculate the SFSE of this differential game and characterize the optimal

tax with commitment.
10This assumption has been extensively used in the literature among others by Petrakis and Xepa-

padeas (2003), Poyago-Theotoky and Teerasuwannajak (2002) and more recently by Moner-Colonques

and Rubio (2016) in a static context. In a dynamic context has been used for instance by Yanese (2009).
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5.1 The Stagewise Feedback Stackelberg Equilibrium

For this LQ policy game, the first-order conditions (4) and (6) define the dependence of

the production and abatement with respect to the tax

q(τ , x) =
1

2
(a− c− (τ − V ′(x))) , (18)

w(τ , x) =
1

γ
(τ − V ′(x)). (19)

Therefore, ∂q/∂τ = −1/2 and ∂w/∂τ = 1/γ, and consequently Prop. 1 holds, i.e.

the second-best emission tax with commitment is lower than the difference between the

social and the private valuations of the pollution stock. Taking into account these partial

derivatives, condition (9) defines the optimal tax rule

τ(x) = V ′(x)− γ(a− c) + 2(γ + 2)W ′(x)

γ + 4
. (20)

Next, substituting τ − V ′ in (18) and (19) the optimal strategies for the output and

abatement read

q(x) =
γ + 2

γ + 4
(a− c+W ′(x)), (21)

w(x) = −γ(a− c) + 2(γ + 2)W ′(x)

γ(γ + 4)
. (22)

Notice that as both output and abatement depend on τ−V ′, finally the optimal strategies

of these two control variables are independent of the first derivative of the monopolist’s

value function. The emissions can be obtained as the difference between output (gross

emissions) and abatement

s(x) = q(x)− w(x) =
γ(γ + 3)(a− c) + (γ + 2)2W ′(x)

γ(γ + 4)
. (23)

Now, substituting the optimal strategies (21) and (22) in the regulator’s HJB equation

(8), the following nonlinear differential equation is obtained

rW (x) =
γ + 3

2(γ + 4)
(a−c)2+ γ + 3

γ + 4
(a−c)W ′(x)+

(γ + 2)2

2γ(γ + 4)
W ′(x)2− d

2
x2−δxW ′(x). (24)
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In order to solve this equation, we guess a quadratic representation for the value

function W :

W c(x) =
Ac1
2
x2 +Bc

1x+ Cc
1, (25)

which implies that dW c(x)/dx = Ac1x+Bc
1 and where A

c
1, B

c
1 and C

c
1 are unknowns to be

determined.11

The substitution of W c(x) and dW c(x)/dx into (24) yields a system of Riccati equa-

tions that must hold for every x. Then if this system of equations for the coeffi cients of

the value function has a solution, the optimal strategies for output and abatement would

be

qc(x) =
γ + 2

γ + 4
(a− c+Bc

1 + Ac1x) , (26)

wc(x) = − 1

γ(γ + 4)
(γ(a− c) + 2(γ + 2)Bc

1 + 2(γ + 2)Ac1x) , (27)

which are obtained from (21) and (22). Finally, we obtain the dynamics of the state

variable in terms of the coeffi cients of the value function substituting (26) and (27) in

(17)

ẋ =
γ + 3

γ + 4
(a− c) +

(γ + 2)2

γ(γ + 4)
Bc
1 +

(
(γ + 2)2

γ(γ + 4)
Ac1 − δ

)
x. (28)

Thus, if we look for a stable solution, the following condition should be satisfied

dẋ

dx
< 0→ dẋ

dx
=

(γ + 2)2

γ(γ + 4)
Ac1 − δ < 0.

Applying this stability condition, we find that the system of Riccati equations has only

one stable solution given by the following values for the coeffi cients of the regulator’s

value function

Ac1 =
γ(γ + 4)(r + 2δ)−

√
γ(γ + 4)[4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2]

2(γ + 2)2
< 0, (29)

Bc
1 =

γ(γ + 3)(a− c)Ac1
γ(γ + 4)(r + δ)− (γ + 2)2Ac1

< 0, (30)

Cc
1 =

(γ + 3)(a− c)2[γ (γ + 4) (r + δ) (γ(r + δ)− 2Ac1) + (γ + 2)2(Ac1)
2]

2r(γ(γ + 4)(r + δ)− (γ + 2)2Ac1)
2

> 0. (31)

11Recall that the superscript c stands for commitment and is associated with the solution of the game

given by the SFSE.
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Using these coeffi cients and taking into account the Riccati equation for Ac1, the steady-

state pollution stock can be calculated resulting in

xcSS =
(a− c)γ(γ + 3)(r + δ)

(γ + 2)2d+ γδ(γ + 4)(r + δ)
. (32)

This expression clearly establishes an inverse relationship between the pollution stock at

the steady state and d, the slope of the marginal damages curve. Thus, we can conclude

the larger the marginal damages the lower the accumulation of emissions at the steady

state.

Moreover, the optimal strategies for output, abatement and emissions are

qc(x) =
(a− c)(γ + 2)(Ac1 − γ(r + δ))

(γ + 2)2Ac1 − γ(γ + 4)(r + δ)
+

(γ + 2)Ac1
γ + 4

x, (33)

wc(x) =
(a− c)(γ(r + δ) + (γ + 2)Ac1)

(γ + 2)2Ac1 − γ(γ + 4)(r + δ)
− 2(γ + 2)Ac1

γ(γ + 4)
x, (34)

sc(x) =
(a− c)γ(γ + 3)(r + δ)

γ(γ + 4)(r + δ)− (γ + 2)2Ac1
+

(γ + 2)2Ac1
γ(γ + 4)

x, (35)

where Ac1 < 0 is given by (29). It is easy to show that if d is larger than the critical value

dcw =
γ(r + δ)[(r + δ)(γ + 2) + (γ + 4)(r + 2δ)]

(γ + 4)(γ + 2)
, (36)

the abatement is positive for all x. Then, we can conclude that

Proposition 4 If d is larger than dcw and the pollution stock is lower than

xcs =
γ(a− c)(γ + 3)(r + δ)

(γ + 2)2(δAc1 + d)
> xcSS,

then the production and emissions decrease and the abatement increases with the pollution

stock.

Proof. See Appendix.

⇒ FIGURE 1⇐

In Fig. 1 we have represented the optimal strategies and the steady state. The figure

also illustrates the dynamics of the model. If the initial pollution stock is lower than
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the steady-state pollution stock, xcSS, the production is decreasing and the abatement is

increasing resulting in decreasing emissions. The emissions are larger than the natural

decay of pollution stock and the stock of pollution increases until the steady state is

reached. If the initial pollution stock is larger than xcSS but lower than x
c
s, the production

is increasing and the abatement decreasing yielding increasing emissions. In this case,

the emissions are lower than the natural decay and the pollution stock decreases until

the steady state is reached.12

5.1.1 The Second-Best Emission Tax with Commitment

The features of the model allow to calculate the optimal strategies for production, abate-

ment and net emissions without solving the monopolist’s HJB equation. However, the

next step, the calculation of the regulator optimal policy, cannot be given without solving

this equation. With this aim, we substitute the tax given by (20), the output defined by

(21) and the abatement specified by (22) in the monopolist’s HJB equation given by (3)

obtaining the following differential equation

rV (x) =
2γ2 + 9γ + 8

2(γ + 4)2
(a− c)2 +

2 (γ + 3) (γ + 2)

(γ + 4)2
(a− c)W ′(x)

+
(γ + 2)3

γ(γ + 4)2
W ′(x)2 − V ′(x)δx. (37)

In order to solve this equation, we also guess a quadratic representation

V c(x) =
Ac2
2
x2 +Bc

2x+ Cc
2, (38)

that yields dV c(x)/dx = Ac2x + Bc
2. The substitution of V

c(x) and dV c(x)/dx into (37)

yields a system of Riccati equations whose solution is

Ac2 =
2(γ + 2)3

γ(r + 2δ)(γ + 4)2
(Ac1)

2 > 0, (39)

Bc
2 =

2(a− c)γ (γ + 3) (γ + 2)Ac1
(γ + 4)(γ(γ + 4)(r + δ)− (γ + 2)2Ac1)

< 0, (40)

12We bound the feasible values for d and x to guarantee that the control variables take non-negative

values. To keep the model as simple as possible we do not address the characterization of corner solutions

in this paper.
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Cc
2 =

(a− c)2[(2γ2+9γ+8)γ2(r+δ)2 − 2γ(γ+4)(γ+2)(r+δ)Ac1 + (γ+2)3(Ac1)
2]

2r(γ(γ + 4)(r + δ)− (γ + 2)2Ac1)
2

> 0.

(41)

Then eliminating V ′(x) and W ′(x) in (20) using the coeffi cients of the value functions,

the optimal policy is obtained.13

Proposition 5 The optimal policy is given by the following rule

τ c(x) = −γ(a− c)
γ + 4

+
2(γ + 2)d

(r + 2δ)(γ + 4)
x. (42)

If environmental damages are large enough, in particular if d is larger than

dcτ =
γδ(γ + 4)(r + 2δ)(r + δ)

(r(γ + 4) + 2δ)(γ + 2)
,

there exists a threshold value for the stock of pollution, xcτ , given by the following expres-

sion

xcτ =
γ(a− c)(r + 2δ)

2(γ + 2)d
< xcSS

such that the optimal policy consists of applying a decreasing subsidy for x < xcτ and an

increasing tax for x > xcτ .

Proof. The value of the pollution stock xcτ is calculated doing τ
c(x) = 0 and the difference

of this value with the steady-state pollution stock is

xcSS − xcτ =
(a− c)γ[(r(γ + 4) + 2δ)(γ + 2)d− γδ(γ + 4)(r + 2δ)(r + δ)]

2(γ + 2)[d(γ + 2)2d+ γ(γ + 4)(r + δ)δ]d

that is positive for d > dcτ .

The intuition of this result is straightforward. When the pollution stock is zero, the

marginal damages are also zero and the ineffi ciency of the monopoly is caused only by

its market power. It is well known that in this case the monopoly reduces its output to

take advantage of a larger price selecting a level of production lower than the effi cient

13Notice that the monopolist’s value function has a minimum for a positive value of the pollution

stock. It is easy to check that this minimum is larger than xcs ensuring that dV
c/dx is negative in the

interval [0, xcs].
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level. Then, the optimal policy consists of setting up a subsidy to stimulate production.14

Thus, when the pollution stock is zero or when is low the environmental problem is not

relevant and the regulator applies exclusively an industrial policy. However, once the

emissions accumulate causing environmental damages, the ineffi ciency of the polluting

monopoly is also caused by a negative externality. In other words, there are two market

failures operating at the same time. The point is that a negative externality induces

the firm to produce more than the effi cient level and in this case, as is also well known,

the optimal policy, when the firm is competitive, consists of applying an emission tax to

reduce the firm’s output and emissions. Thus, the sign of the optimal policy applied by

the regulator when the two market failures are acting at the same time can be negative

(a subsidy) or positive (a tax) depending on the stock pollution level and also on the

importance of the marginal damages. Prop. 5 defines a threshold value for d that implies

that a tax is applied at the steady state. In other words, it implies that environmental

damages are serious enough to justify that the environmental policy (taxation) dominates

the industrial policy (subsidization) at the steady state.

The comparison of dcw and d
c
τ yields an ambiguous sign. For this reason, we assume

that d > max{dcw, dcτ}. The consequences of this assumption are that the non-negative

constraint is satisfied by the control variables of the model in the interval [0, xcs] because

d > dcw, and that the optimal policy at the steady state consists of setting a tax on

emissions given that d > dcτ .

5.2 The Markov Perfect Equilibrium with Limited Commit-

ment

For this equilibrium, condition (13) directly defines the optimal strategy from production

q(x) = a− c+W ′(x). (43)

14Observe that a subsidy is compatible with a positive abatement effort because it depends not only

on the tax but also on the shadow price of the pollution stock. According to (6), w depends on the

difference τ − V ′ where V ′ is negative so that this difference can be positive even when τ is negative.
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Substituting in condition (4) gives the tax rule

τ(x) = V ′(x)− (a− c)− 2W ′(x). (44)

Notice that the tax does not depend on abatement which implies that production does not

depend on abatement either. This independence of the tax with respect to the abatement

eliminates the possibility of using the abatement in the first stage for influencing the tax.

Thus, for our model we may define the LCMPE as the solution of a two-stage game

where in the first stage the regulator and the firm decide simultaneously the tax rate and

abatement respectively and in the second stage the firm chooses the level of production.15

In this case, condition (15) that characterizes the optimal abatement for the LCMPE

coincides with the condition (6) that characterizes the optimal abatement for the SFSE.

Therefore, w(τ , x) is again given by (19).

Finally, eliminating τ − V ′ in (19) using (44), we obtain the optimal strategy for

abatement

w(x) = −1

γ
(a− c+ 2W ′(x)). (45)

Notice that again the optimal strategies of both variables are independent of the first

derivatives of the monopolist’s value function. The emission can be calculated as the

difference between output (gross emissions) and abatement yielding

s(x) = q(x)− w(x) =
1

γ
((γ + 1)(a− c) + (γ + 2)W ′(x)) . (46)

Now, substituting the optimal strategies (43) and (45) in the HJB equation (8), the

following nonlinear differential equation for the regulator’s value function is obtained

rW (x) =
γ − 1

2γ
(a− c)2 +

γ − 1

γ
(a− c)W ′(x) +

1

2
W ′(x)2 − d

2
x2 − δxW ′(x). (47)

We also guess in this section a quadratic representation for the value function W 16:

W nc(x) =
Anc1
2
x2 +Bnc

1 x+ Cnc
1 , (48)

15As we have already pointed out, the possibility of using the abatement to influence the emission

tax depends on the sign of the cross effects between production and abatement in the emission and cost

functions. With an additive and separable cost function and a linear emission function, these cross effects

are zero and the equilibrium in the first stage is an equilibrium in dominant strategies.
16Recall that the superscript nc stands for limited commitment and is associated with the solution of

the game given by the LCMPE.
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whose first derivative is dW nc(x)/dx = Anc1 x+Bnc
1 .

The substitution of the first derivative and the proposed value function in (47) gives

a system of Riccati equations. If this system of equations for the coeffi cients of the value

function has a solution, the optimal strategies for the output and the abatement are

qnc(x) = a− c+Bnc
1 + Anc1 x, (49)

wnc(x) = −1

γ
(a− c+ 2Bnc

1 + 2Anc1 ) , (50)

that are derived from (43) and (45) by substitution of the first derivative of the value

function. Using these two optimal strategies to eliminate the output and the abatement

in (17), the dynamics of the pollution stock is

ẋnc =
1 + γ

γ
(a− c) +

γ + 2

γ
Bnc
1 +

(
γ + 2

γ
Anc1 − δ

)
x, (51)

so that the stability condition implies the following constraint on Anc1

dẋ

dx
< 0→ dẋ

dx
=
γ + 2

γ
Anc1 − δ < 0.

Only one of the roots of the first equation of the system of Riccati equations satisfies this

constraint

Anc1 =
1

2

(
r + 2δ −

√
(r + 2δ)2 + 4d

)
< 0. (52)

The other two coeffi cients of the value functions can be written as a function of Anc1

Bnc
1 =

(γ − 1)(a− c)Anc1
γ(r + δ − Anc1 )

< 0 for γ > 1, (53)

Cnc
1 =

(γ − 1)(a− c)2(γ(r + δ)2 − 2(r + δ)Anc1 + (Anc1 )2)

2rγ2(r + δ − Anc1 )2
> 0. (54)

For this solution of the Riccati equations, the steady-state pollution stock is

xncSS =
(a− c)(γ(γ + 1)(r + δ)− 2Anc1 )

γ(r + δ − Anc1 )(γδ − (γ + 2)Anc1 )
> 0. (55)

The optimal strategies for production, abatement and emissions are

qnc(x) =
(a− c)(γ(r + δ)− Anc1 )

γ(r + δ − Anc1 )
+ Anc1 x, (56)

wnc(x) = −(a− c)(γ(r + δ) + (γ − 2)Anc1 )

γ2(r + δ − Anc1 )
− 2Anc1

γ
x, (57)

snc(x) =
(a− c)(γ(γ + 1)(r + δ)− 2Anc1 )

γ2(r + δ − Anc1 )
+

(γ + 2)Anc1
γ

x, (58)
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where Anc1 < 0 is given by (52). Using the optimal strategy for the abatement, it is

easy to check that if γ is larger than 2 and environmental damages are large enough, in

particular if d is larger than

dncw =
γ2(r + δ)2 + γ(r + δ)(2δ + r)(γ − 2)

(γ − 2)2
, (59)

the abatement is positive for all x. Then, we can conclude that

Proposition 6 If γ is larger than 2, d larger than dncw and the pollution stock is lower

than

xncs =
(a− c)(γ(γ + 1)(r + δ)− 2Anc1 )

γ(γ + 2)(d+ δAnc1 )
> xncSS,

the production and emissions decrease and the abatement increases with the pollution

stock.

The proof of this proposition follows step by step the proof of Prop. 4. For this

reason we omit it. Notice that the optimal strategies for the LCMPE present the same

qualitative features that those derived in the previous section for the SFSE.

5.2.1 The Second-Best Emission Tax with Limited Commitment

As occurs for the solution of the game with commitment, the optimal strategies for pro-

duction, abatement and net emissions can be computed without solving the monopolist’s

HJB equation. However, to derive the optimal policy it is necessary to solve this equa-

tion. With this aim, we substitute the tax given by (44), the output defined by (43) and

the abatement specified by (45) in the monopolist’s HJB equation obtaining the following

differential equation for the monopolist’s value function

rV (x) =
1 + 2γ

2γ
(a− c)2 +

2(γ + 1)

γ
(a− c)W ′(x) +

γ + 2

γ
W ′(x)2 − V ′(x)δx. (60)

We also guess a quadratic representation for this case

V nc(x) =
Anc2
2
x2 +Bnc

2 x+ Cnc
2 ,
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whose first derivative is dV nc(x)/dx = Anc2 x+Bnc
2 . The substitution of V

nc(x), dV nc(x)/dx

and also dW nc(x)/dx into (60) results in a system of Riccati equations whose solution is

Anc2 =
2(γ + 2)

γ(r + 2δ)
(Anc1 )2 > 0, (61)

Bnc
2 =

2(a− c)((γ + 1)(r + δ)γAnc1 − 2(Anc1 )2)

γ2(r + δ)(r + δ − Anc1 )
< 0, (62)

Cnc
2 =

(a− c)2[γ2(1+2γ)(r+δ)2 − 2γ(γ+2)(r+δ)Anc1 + (γ2−2γ+4)(Anc1 )2]

2rγ3(r + δ − Anc1 )2
> 0. (63)

Next, we derive the optimal policy eliminating V ′(x) and W ′(x) using the coeffi cients

of the value functions.17

Proposition 7 The optimal policy is given by the following rule

τnc(x) =
(a− c)(γ2(r + δ)2 − γ(γ + 4)(r + δ)Anc1 + 4(Anc1 )2)

γ2(r + δ)(Anc1 − r − δ)

+
2(γ + 2)(Anc1 )2 − 2γ(r + 2δ)Anc1

γ(r + 2δ)
x. (64)

where Anc1 is given by (52). τnc(x) increases with the pollution stock but is negative for

x = 0, i.e. the optimal policy consists of setting up a subsidy for x = 0.

Although in this case it is not possible to derive an explicit value for the parameter

d above which the optimal policy at the steady state is a tax, the fact that τnc increases

with the pollution stock suggests that this is a feasible outcome of the game with limited

commitment. The intuition behind this result is the same that in the case of with com-

mitment. Notice that there are no qualitative differences between the optimal strategies

obtained for both policy games: output and emissions decrease with the pollution stock,

whereas abatement and the tax augment. In this section is assumed that γ > 2 and

that d > dncw . These two assumptions guarantee that abatement is positive for x = 0

so that we can conclude that the control variables of the model satisfy the non-negative

constraint in the interval [0, xncs ].18

17Again the monopolist’s value function has a minimum for a positive value of the pollution stock that

is larger than xncs , ensuring that dV
nc/dx is negative in the interval [0, xncs ].

18It is easy to show that dncw > dcw. Then if d is larger than d
nc
w is also larger than dcw and, according

to Prop. 4, the optimal abatement is also positive for the SFSE.
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5.3 Comparing the Optimal Emission Taxes

In this section, we investigate the effects of a limited commitment on the optimal policy

and social welfare. To guarantee an interior solution we assume that γ > 2 and that

d > max{dcτ , dncw }.19 We begin the comparison calculating the difference between the

steady-state values of the pollution stock. The result is

Lemma 1 The steady state for the pollution stock with commitment is lower than with

limited commitment, i.e. xcSS < xncSS and consequently the steady-state emissions are also

lower.

Proof. See Appendix.

Next, we study the effects of a limited commitment on the optimal policy. First, we

compare the steady-state values of the emission tax. The comparison gives the following

result

Proposition 8 If environmental damages are large enough, in particular if d is larger

than

dτSS =
γ(γ + 4)(r + δ)(r + 2δ)(2γ2 (r + δ) + 2γ (3r − δ)− 16δ)

4(γ + 2)(γ2 (r + 3δ) + γ (5r + 13δ) + 8 (r + 2δ))
, (65)

then the steady-state tax with commitment is larger than the steady-state tax with limited

commitment, i.e. τnc(xncSS) < τ c(xcSS).

To show this result we calculate first the steady-state value of the emission tax with

commitment substituting the steady-state value of pollution stock in the tax rule (42).

Then using the tax rule of the LCMPE given by (64), we calculate the value of the

pollution stock for which this tax rule yields the steady-state value of the emission tax

with commitment, and show that this value of the pollution stock is larger than the

steady-state pollution stock corresponding to the LCMPE. Thus, taking into account

that the tax rules are increasing with respect to the pollution stock, it can be concluded

19Remember that d > dcτ guarantees that the optimal policy at the steady state is to tax emissions

for the SFSE. Moreover, d > dncw along with γ > 2 yield a positive abatement for both the SFSE and

LCMPE.
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that the steady-state value of the emission tax with limited commitment must be lower

than the value that the tax with commitment takes at the steady state. This is the

sketch of the proof. Nevertheless, for the interested reader the details can be checked at

the Appendix.

This proposition defines a suffi cient condition so that this result could hold for values

of d below the lower bound (65). The numerical exercise that closes this section shows

that this condition is not very restrictive. Thus, we can expect that the steady-state tax

rate with commitment is larger than the steady-state tax with limited commitment for a

wide constellation of parameter values.

Now, we study the effects of a limited commitment on the optimal tax rule evaluating

how the intersection point with the vertical axis, i.e. the subsidy for x = 0, and the slope

of the optimal tax rule change. The results are

Lemma 2 The slope of the optimal tax rule is lower with commitment than with limited

commitment, while the optimal tax for a null pollution stock is greater with commitment

than with limited commitment i.e. τnc(0) < τ c(0) < 0, 0 < mc < mnc, where mc and mnc

denote the slopes of the optimal tax strategy for the commitment and limited commitment

equilibria, respectively.

Proof. See Appendix.

If suffi cient condition (65) is satisfied it is immediate to conclude from the previous

results that

Corollary 1 The optimal policy with commitment gives larger values for τ than the

optimal policy with limited commitment in the interval [0, xncSS], i.e. τ c(x) > τnc(x), ∀x ∈

[0, xncSS].

Proof. According to Lemma 2, the optimal tax rules must intersect once. Then if we

denote by xip the value of the pollution stock defined by the intersection point, τ c(x)

must be larger than τnc(x) for all x in the interval [0, xip) also by Lemma 2. Suppose

that xncτSS is larger than or equal to x
ip. In this case according to Prop. 7, xncSS should be
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lower than xcSS but this contradicts Lemma 1. Thus, x
nc
SS is lower than x

ip and τ c(x) is

larger than τnc(x) for all x in the interval [0, xncSS].

Next, we study the effects that a limited commitment has on the payoffs of both

players. Unfortunately, the comparison of the payoffs is ambiguous because it involves

the coeffi cients of the value functions corresponding to the two equilibria. Nevertheless,

it is possible to get an unambiguous comparison when the initial pollution stock is zero.20

In this case, we obtain the following result

Proposition 9 The net social welfare is lower with limited commitment whereas net

profits are larger.

Proof. See Appendix.

Thus, a reduction in commitment has a cost in welfare terms. The limited commit-

ment benefits the firm but does not increase social welfare. This result suggests that the

increase in damages because of a larger pollution stock in the case of a limited commit-

ment dominates any other variation in net social welfare caused by the other variables

yielding in net terms a reduction in net social welfare.

To have an idea of whether this detrimental effect on welfare holds for initial values of

the pollution stock different from zero, we carry out a numerical exercise. In this numerical

example we keep constant r and δ and consider variations on γ and d, parameters that

determine the slope of the marginal abatement costs and marginal environmental damages

respectively. We assume two reasonable values for r and δ : r = 0.05 and δ = 0.10.21

First, we compute the lower bounds for parameter d defined in the paper to get an idea

whether the conditions imposed on this parameter are very restrictive. It is very easy to

check that for the parameter values of this example, the different lower bounds defined

on parameter d are satisfied assuming d > 1. Next, as the steady state is globally stable

20Notice that when the pollution stock is zero, the comparison of the value functions reduces to the

comparison of the coeffi cients C.
21Nevertheless, we have checked whether the sign of payoffs comparison could be affected by a change

in the decay rate of pollution comparing also the payoffs for δ = 0.05. For both values, 0.05 and 0.10, the

sign remains the same. For this reason, the second exercise is omitted.
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instead of comparing the players’payoffs for different initial values of the pollution stock

we focus on the steady-state values because all the temporal paths from different initial

values for the same equilibrium converge to the same steady state.

In Table 1a, the net social welfare for the steady-state pollution stocks are represented

for a = 1000 and c = 20. In each box, the first figure stands for the steady-state

value corresponding to the SFSE, whereas the second figure represents the corresponding

steady-state value for the LCMPE. The comparison of the different figures is in the line of

the result presented in Prop. 9: the net social welfare is lower with limited commitment.

The figures also show that welfare decreases with the environmental damages and also

with the abatement costs when the regulator moves first but not necessarily with a limited

commitment. In this case, an increase in environmental damages for low values of the

abatement costs has a positive effect on welfare. The explanation to this effect should

be looked for in the impact that larger damages has on the steady-state pollution stock.

We expect that for large damages the pollution stock is lower. Therefore, given the

structure of the value function with the coeffi cients A1 and B1 negative, a reduction

in the coeffi cient C1 because of the increase in the parameter d could be more than

compensated by the reduction in the steady-state pollution stock yielding a higher net

social welfare.

γ\d 2.50 5.00 10.00 20.00

2.50 2621776, 2237773 2615135, 2255993 2611813, 2269594 2610153, 2279578

5.00 1587199, 1524898 1577599, 1524884 1572799, 1526575 1570399, 1528638

10.00 890508, 877835 878768, 869256 872897, 865483 869962, 863976

20.00 482412, 479226 469400, 467204 462894, 461326 459640, 458490
Table 1a. Net social welfare for the steady-state pollution stocks.

In Table 1b we show the welfare losses in relative terms caused by a limited commitment.

The figures show that the differences between the two equilibria are minimal when both

damages and abatement costs are high. Moreover, it can be checked that welfare losses

are more inelastic to environmental damages than to abatement costs. For instance, when

γ = 2.5 an increase in d from 2.50 to 20.00 reduces the welfare losses in 1.98 percentage

points. However, when d = 2.5 for an increase in γ from 2.50 to 20.00, the welfare losses
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go down by 13.99 percentage points.

γ\d 2.50 5.00 10.00 20.00

2.50 14.65 13.73 13.10 12.67

5.00 3.93 3.34 2.94 2.66

10.00 1.42 1.08 0.85 0.69

20.00 0.66 0.47 0.34 0.25
Table 1b. Welfare losses (%).

To complete the comparison of payoffs we present in Table 2a the discounted present

value of net profits. The figures support the result of Prop. 9: net profits are larger with

limited commitment. Now, net profits decrease both with the environmental damages

and abatement costs for both equilibria.

γ\d 2.50 5.00 10.00 20.00

2.50 2163545, 3159753 2148909, 3018081 2141571, 2923792 2137898, 2860138

5.00 1419589, 1626478 1395844, 1548869 1383934, 1502295 1377970, 1473577

10.00 864460, 927885 832466, 873258 816417, 843692 808379, 827368

20.00 512546, 536979 474631, 489593 455609, 464248 446082, 451482
Table 2a. Net profits for the steady-state pollution stocks.

Table 2b shows the increase in net profits in relative terms caused by a limited com-

mitment. The percentages also decrease both with damages and abatement costs as it

happened in the case of net social welfare. However, the increments of the net profits

in percentage points are significantly larger than the reductions of social welfare also in

percentage points for all the cases. For instance, for γ = d = 2.5 the reduction in welfare

is 14.65% whereas the increase in net profits is 46.04%. This difference is explained by

the variations in the optimal policy caused by a limited commitment. As shown in Fig. 2

just for these parameter values, when there is commitment the optimal policy consists of

taxing emissions for t > 1 whereas with limited commitment the firm receives a subsidy

all the time, accounting for the substantial increase in net profits the firm obtains when

the regulator does not move first.22 Nevertheless, the larger the abatement costs and

22Notice that if the firm receives a subsidy, net profits include subsidies.
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the larger the damages, the lower is this effect because the difference between the two

solutions substantially decreases.

γ\d 2.50 5.00 10.00 20.00

2.50 46.04 40.45 36.52 33.78

5.00 14.57 10.96 8.55 6.94

10.00 7.34 4.90 3.34 2.35

20.00 4.77 3.15 1.90 1.21
Table 2b. Increase in net profits (%).

Next, with the aim of having a better intuition about the effects of a limited commit-

ment on welfare, we compute the steady-state values of production and abatement. In

Table 3, the steady-state values for production are represented.

γ\d 2.50 5.00 10.00 20.00

2.50 219.98, 226.17 218.88, 223.24 218.33, 221.40 218.05, 220.22

5.00 143.41, 146.01 141.71, 143.53 140.86, 142.13 140.43, 141.33

10.00 86.06, 86.98 83.87, 84.50 82.77, 83.23 82.22, 82.53

20.00 49.60, 49.88 47.08, 47.27 45.81, 45.95 45.18, 45.27
Table 3. Steady-state values of production.

According to the figures that appear in this table, the steady-state value of production

with a limited commitment is always larger than the corresponding value with commit-

ment. Moreover, for both equilibria the output decreases both with respect to damages

and abatement costs. However, an increase in damages has a lower effect on the steady-

state value of production that the effect caused by an increase in abatement costs. In

other words, a variation in abatement costs causes a stronger change in the level of pro-

duction than the change caused by the same variation in environmental damages. Finally,

it could be pointed out that the higher the damages and abatement costs, the lower the

differences in production at the steady state.

32



γ\d 2.50 5.00 10.00 20.00

2.50 216.01, 211.07 216.89, 213.41 217.34, 214.88 217.56, 215.82

5.00 138.63, 137.59 139.31, 138.59 139.66, 139.15 139.83, 139.47

10.00 80.79, 80.60 81.23, 81.10 81.45, 81.36 81.56, 81.49

20.00 44.04, 44.01 44.29, 44.27 44.42, 44.40 44.48, 44.47
Table 4. Steady-state values of abatement.

The figures in Table 4 establish that the steady-state value of abatement when the regu-

lator moves first is larger than the steady-state value corresponding to the LCMPE. They

also establish that the abatement increases with damages and decreases with abatement

costs. In other words, the larger the damages the larger the abatement, whereas the con-

trary occurs with the abatement costs. Again, the effect of a change in damages on the

steady-state values is significantly weaker that the effect of a change in abatement costs,

and the differences in the abatement at the steady state are minimal for big values of

damages and abatement costs.

As the output is lower and the abatement is larger at the steady state for the SFSE,

the emissions are higher with limited commitment as it has been established in Lemma

1. Moreover, as the output decreases with environmental damages and the abatement

increases both things for both equilibria, the emissions are decreasing with respect to

damages for both equilibria. However, the larger the abatement costs the larger the

emissions for the SFSE, although the contrary occurs for the LCMPE. This difference

is explained by the fact that the reduction in production with limited commitment is

larger than the reduction in production with commitment when the abatement costs

increase whereas the contrary occurs for the abatement. The result is that the net effect

on emissions of an increase in abatement costs is different for each equilibrium.

Finally, we compare the optimal paths of the different variables of the model for

γ = d = 2.5 and an initial pollution stock equal to zero. In Fig. 2 we plot the optimal

paths of the tax. In green, the temporal trajectory of the tax with commitment and in

black with limited commitment.
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Figure 2. The optimal paths of the emission tax.

The figure shows that a reduced commitment drastically changes the type of the optimal

policy. With commitment, the optimal policy for x0 = 0 consists of subsidizing emissions

to correct the effect of the monopolist’s market power on production but in less that one

period the subsidy becomes a tax and continues being a tax until reaching its steady state

value of 173.25. However, with a limited commitment the optimal path yields a subsidy

for all t. The path converges to a steady-state value for τ equal to −2860.42. As pointed

out above this difference in the sign of the optimal policy explains the significant increase

in net profits whit limited commitment. This numerical example shows a case where a

subsidy applies at the steady state. In this case, the severity of environmental damages

does not justify a tax be applied but the accumulation of emissions induces a reduction of

the subsidy. Fig. 3 shows that the optimal path of production with limited commitment

is above the optimal path with commitment. The subsidy incentives production whereas

the tax has the opposite effect. The result is a level of production for the SFSE that is
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lower than the level of production for the LCMPE for all t.
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Figure 3. The optimal paths of production.

Fig. 4 shows that the abatement effort is lower for all t with limited commitment. The

subsidy is an incentive to reduce abatement, and therefore, to emit more. Notice that

if the production is larger and the abatement is lower with limited commitment, the

emissions must be larger in this case.
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Figure 4. The optimal paths of abatement.

Finally, in Fig. 5 we represent the optimal paths for the pollution stocks. As emissions

are larger with limited commitment, the pollution stock is larger for the LCMPE.
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Figure 5. The optimal paths of pollution stock.

This dynamic analysis gives support to the intuition previously presented that the

increase in damages caused by the increment in the pollution stock dominates the other

changes in the different terms included in the net social welfare function yielding a re-

duction in welfare when the regulator does not move first. Summarizing, the reduction in

commitment implies a change in the sign of the optimal policy turning a tax in a subsidy,

increases output and reduces abatement causing an increase in emissions that leads to

a larger pollution stock. The expansion of output increases consumer surplus and the

decrease of abatement reduces abatement costs. Both changes are welfare improving but,

as can be seen in Fig. 5, there is an important augmentation of the pollution stock that

results in an increase of damages big enough as to yield finally a reduction in net social

welfare.

6 Conclusions

This paper studies the effects that a limited commitment has on the optimal taxation of a

polluting monopoly and its welfare implications. To evaluate these effects we compare two

equilibria of a policy game between a regulator and a monopolist: the stagewise feedback

Stackelberg equilibrium and the limited commitment Markov-perfect equilibrium. In the
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SFSE, it is assumed that the regulator cannot commit for the entire time horizon of the

game but he enjoys a strategic advantage in each period. However, in the LCMPE it is

assumed that the regulator and the monopolist first simultaneously choose the emission

tax and abatement respectively before the monopolist decides the production level. The

two equilibria are different, establishing that although the SFSE is time consistent is not

intratime consistent, i.e. it is not time consistent in each period. The comparison of

these two equilibria for the LQ policy game analyzed in this paper establishes that the

steady-state pollution stock with commitment is lower than with limited commitment.

Thus, the lack of credibility in each period has a clear consequence on the accumulation

of emissions leading to larger damages at the steady state. Moreover, we show that

this lack of intratime commitment moves down the tax rule applied by the regulator. If

environmental damages are not very low, the steady-state tax with commitment is larger

than the steady-state tax with limited commitment that, on the other hand, could be

negative, i.e. the optimal policy would be to apply a subsidy. The welfare implications

of a limited commitment are unclear except when the initial pollution stock is zero. For

this case, the net social welfare is lower with a limited commitment whereas net profits

are larger.

To progress in the comparison we have computed a numerical example that shows that

a limited commitment has a negative impact on social welfare also for the steady-state

pollution stock. Thus, our analysis shows that a reduction in the regulator’s commitment

level has a detrimental effect on welfare. However, the numerical exercise also shows that

this negative effect decreases with the abatement costs and that for large abatement costs

the difference in welfare between the two equilibria is practically zero. Finally, we find that

the steady-state value of production for the LCMPE is larger than the steady-state value

of production for the SFSE whereas the contrary is true for abatement. Thus, a limited

commitment leads to lower taxation and abatement and larger production. However,

the increase in consumer surplus because of a larger production and the reduction in

abatement costs is more than compensated by the increase in environmental damages

originated by a larger pollution stock resulting in a reduction of net social welfare.

A limitation of our analysis is that we have assumed the simplest form of the emission
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function, i.e. one that is additively separable in production (gross emissions) and abate-

ment. To overcome this limitation, an interesting extension to develop in the future would

be to consider that abatement expenditures can reduce the emissions-to-output ratio or

that emissions can be reduced by investing in abatement capital. This second approach

would allow to study the dynamic interaction between the accumulation of emissions and

the accumulation of abatement capital. A further step in this line of research would be to

analyze the effects of a reduced commitment when the abatement technology is subject

to stochastic innovation. Finally, it would be also interesting to know how the results

would change if the market structure is an oligopoly.

Appendix

Proof of Proposition 3

To guarantee that abatement is positive for x ≥ 0, wc(0) for the optimal strategy

(34) must be positive since the slope of the strategy is positive. This requires that γ(r +

δ) + (γ+ 2)Ac1 be positive. Substituting A
c
1 by (29) this expression is negative if and only

if

γ(r + δ) + (γ + 2)
γ(γ + 4)(r + 2δ)−

√
γ(γ + 4)[4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2]

2(γ + 2)2
< 0,

that can be reordering yielding

2γ(r + δ)(2 + γ) + γ(4 + γ)(r + 2δ) <
√
γ(4 + γ)[4d(2 + γ)2 + γ(4 + γ)(r + 2δ)2].

Taking square in both side of the inequality gives

γ(r + δ)[(r + δ)(2 + γ) + (4 + γ)(r + 2δ)]− (4 + γ)(2 + γ)d < 0,

that is negative when d > dcw. Thus, if d > dcw, then γ(r + δ) + (γ + 2)Ac1 is negative

and the abatement is positive and increasing for x ≥ 0. On the other hand, according

to (33) and (35), qc(0) and sc(0) are positive and the slope of their optimal strategies

negative. Thus, the output and emissions are decreasing for x ≥ 0.Moreover, if qc(0) and

sc(0) are positive, wc(0) must be lower than qc(0) by definition. Also by definition the

emissions are lower than the output so that they will be zero for a value of the pollution
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stock lower than the value for which the output becomes zero. To calculate the value of

the pollution stock that makes zero the emissions we use the equation sc(xcs) = 0 that

yields the value that appears in the proposition. The difference of this value with the

steady-state pollution stock is

xcSS − xcs =
(a− c)γ(γ + 3)(r + δ)[(γ + 2)2δAc1 − γ(γ + 4)(r + δ)δ]

[(γ + 2)2d+ γ(γ + 4)(r + δ)δ](γ + 2)2(δAc1 + d)
,

that is negative for Ac1 negative provided that δA
c
1 + d is positive. According to (29)

δAc1 + d is positive if and only if

δ
γ(γ + 4)(r + 2δ)−

√
γ(γ + 4)[4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2]

2(γ + 2)2
+ d > 0,

that can be rewritten as

γδ(γ + 4)(r + 2δ) + 2(γ + 2)2d > δ
√
γ(γ + 4)[4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2],

taking square in both sides of the inequality and simplifying yields

2 (γ + 2)2 d(rγδ (γ + 4) + 2(γ + 2)2d) > 0,

that established that δAc1 + d is positive.

Proof of Lemma 1

The steady state for the pollution stock with commitment is given by (32) and the

steady state for the pollution stock with limited commitment by (55). Taking into account

that the first Riccati’s equation for the LCMPE establishes that (Anc1 )2 = (2δ+ r)Anc1 +d

and using (52) for eliminating Anc1 , (55) can be written as follows

xncSS =
(a− c)

(
γ(1 + γ)(r + δ) +

√
4d+ (r + 2δ)2 − (r + 2δ)

)
γ
(
d(2 + γ) + δ

(
r + 2δ + γ(r + δ)−

√
4d+ (r + 2δ)2

)) .
Easy computations lead to the following equivalence:

xcSS < xncSS ⇔ Num/Den < 0,

where

Num = (2 + γ)(d+ γδ(r + δ))
(

2(r + 2δ)− γr − (2 + γ)
√

4d+ (r + 2δ)2
)
,

Den =
(
d(2 + γ)2 + γ(4 + γ)δ(r + δ)

)
×(

d(2 + γ) + δ
(
r + 2δ + γ(r + δ)−

√
4d+ (r + 2δ)2

))
.
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Den is positive, because the second factor can be proved to be positive:

d(2 + γ) + δ
(
r + 2δ + γ(r + δ)−

√
4d+ (r + 2δ)2

)
> 0 ⇔

d(2 + γ) + δ (r + 2δ + γ(r + δ))− δ
√

4d+ (r + 2δ)2 > 0 ⇔

[d(2 + γ) + δ (r + 2δ + γ(r + δ))]2 − δ2(4d+ (r + 2δ)2) > 0 ⇔

(d+ δ(r + δ))(d(2 + γ)2 + γδ(r(2 + γ) + (4 + γ)δ)) > 0.

The sign of Num is the same as the sign of the following expression:

2(r + 2δ)− γr − (2 + γ)
√

4d+ (r + 2δ)2. (66)

The expression above is always negative. If 2(r + 2δ) − γr < 0, then the expression in

(66) is negative. If 2(r + 2δ)− γr > 0,then

2(r + 2δ)− γr − (2 + γ)
√

4d+ (r + 2δ)2 < 0 ⇔

2(r + 2δ)− γr < (2 + γ)
√

4d+ (r + 2δ)2 ⇔

(2(r + 2δ)− γr)2 < (2 + γ)2(4d+ (r + 2δ)2) ⇔

4d(2 + γ)2 + 4γ(r + δ)(2r + (4 + γ)δ) > 0.

Therefore, Num/Den < 0, and xcSS < xncSS. At the steady state, scSS = δxcSS and

sncSS = δxncSS that establishes that s
c
SS < sncSS.

Proof of Proposition 8

First, we calculate the steady-state tax rate substituting the steady-state value of the

pollution stock in (42):

τ cSS = τ c(xcSS) = −(a− c)γ(γδF2F3F4 − dF1(rF2 + 2δ))

F2F4(F 21 d+ γδF2F3)
,

where

F1 = γ + 2, F2 = γ + 4, F3 = r + δ and F4 = r + 2δ.

Next using this tax, we derive the value of the stock of pollution, x̃, for which the optimal

tax rule with limited commitment yields the steady-state tax rate of the SFSE. Thus this
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value of the pollution stock must satisfy τnc(x̃) = τ cSS.

x̃ = (a− c)
(

F2F4(γ
2F 23 − γF3F2Anc1 + 4(Anc1 )2)(F 21 d+ γδF2F3)

γF3F2(F3 − Anc1 )(F 21 d+ γδF2F3)(2F1(Anc1 )2 − 2γF4Anc1 )

− γ3F3(F3 − Anc1 )(γδF2F3F4 − dF1(rF2 + 2δ))

γF3F2(F3 − Anc1 )(F 21 d+ γδF2F3)(2F1(Anc1 )2 − 2γF4Anc1 )

)
.

Using the steady-state value of the pollution stock for the LCMPE given by (55),

x̃ > xncSS if and only if

F2F4(γ
2F 23 − γF3F2Anc1 + 4(Anc1 )2)(F 21 d+ γδF2F3)(F1A

nc
1 − γδ)

F3F2(F 21 d+ γδF2F3)(2F1(Anc1 )2 − 2γF4Anc1 )(F1Anc1 − γδ)

− γ3F3(F3 − Anc1 )(F1A
nc
1 − γδ)(γδF2F3F4 − dF1(rF2 + 2δ))

F3F2(F 21 d+ γδF2F3)(2F1(Anc1 )2 − 2γF4Anc1 )(F1Anc1 − γδ)

+
F3F2(F

2
1 d+ γδF2F3)(2F1(A

nc
1 )2 − 2γF4A

nc
1 )(γ(1 + γ)F3 − 2Anc1 )

F3F2(F 21 d+ γδF2F3)(2F1(Anc1 )2 − 2γF4Anc1 )(F1Anc1 − γδ)
> 0, (67)

where the denominator is negative since Anc1 is negative.

The development of the numerator yields

− 4γ4δ2(γ + 4)(r + δ)3(r + 2δ)− 2dγ3δ(γ + 2)(r + δ)2G1(γ, δ, r)

+ Anc1 δγ
2(r + δ)(4(γ + 2)G2(γ, δ, r)d− γ(γ + 4)(r + δ)(r + 2δ)G3(γ, δ, r))

− 2(Anc1 )2γδ(2(γ + 2)2G4(γ, δ, r)d− γ(γ + 4)(r + δ)G5(γ, δ, r))

+ 4(Anc1 )3δ(γ + 2)(γ + 4)(γδ(γ + 4)(r + δ) + d(γ + 2)2), (68)

where

G1(γ, δ, r) = γ2 (r + δ) + γ (5r + 7δ) + 4 (r + 2δ) > 0,

G2(γ, δ, r) = γ2 (r + 3δ) + γ (5r + 13δ) + 8 (r + 2δ) > 0,

G3(γ, δ, r) = 2γ2 (r + δ) + 2γ (3r − δ)− 16δ,

G4(γ, δ, r) = 2γ2 (r + δ) + γ (8r + 9δ) + 4 (2r + 3δ) > 0,

G5(γ, δ, r) = γ3 (r + δ)2 + γ2 (3r − δ) (r + δ)− 2γδ (8r + 9δ)− 8δ (2r + 3δ) .

G3(γ, δ, r) might be positive and in this case

Anc1 δγ
2(r + δ)(4(γ + 2)G2(γ, δ, r)d− γ(γ + 4)(r + δ)(r + 2δ)G3(γ, δ, r))
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might be positive too. However, if d is larger than dτSS given in (65) this possibility is

eliminated. The same occurs for G5(γ, δ, r). In this case d should be larger than

d̂ =
γ(γ + 4)(r + δ)(γ3 (r + δ)2 + γ2 (3r − δ) (r + δ)− 2γδ (8r + 9δ)− 8δ (2r + 3δ))

2(γ + 2)2(2γ2 (r + δ) + γ (8r + 9δ) + 4 (2r + 3δ))

to avoid that

−2(Anc1 )2γδ(2(γ + 2)2G4(γ, δ, r)d− γ(γ + 4)(r + δ)G5(γ, δ, r))

be positive. As d̂ is lower than dτSS, we can conclude that if d is large enough, in particular

if d is larger than dτSS all the terms in (68) are negative and (67) is satisfied so that we

can conclude that x̃ > xncSS. Thus, as the optimal policy is increasing with respect to the

pollution stock we have that τ cSS = τnc(x̃) > τnc(xncSS), i.e. the steady-state tax rate with

limited commitment is lower than the steady-state tax rate with commitment.

Proof of Lemma 2

Substituting in the intersection point of the optimal policy defined by (64) Anc1 given

by (52) we obtain that τnc(0) is equal to

−(a− c)
2
(
r+2δ−γ(r+δ)−

√
4d+(r+2δ)2

)2
− γ2(r+δ)

(
r+2δ−

√
4d+(r+2δ)2

)
γ2(r+δ)(r +

√
4d+(r+2δ)2)

and then using (42) in Prop. 5, the difference τ c(0)− τnc(0) can be written as follows

−(a− c)γ
γ + 4

+(a− c)
2
(
r+2δ−γ(r+δ)−

√
4d+(r+2δ)2

)2
− γ2(r+δ)

(
r+2δ−

√
4d+(r+2δ)2

)
γ2(r+δ)(r +

√
4d+(r+2δ)2)

,

that taking common factor yields

= − (a− c)
(r +

√
4d+(r+2δ)2)

(
γ3(r + δ)(r +

√
4d+(r+2δ)2)

γ2(r + δ)(γ + 4)

−
2(γ+4)

(
r+2δ−γ(r+δ)−

√
4d+(r+2δ)2

)2
γ2(r+δ)(γ + 4)

+
γ2(r+δ)(γ + 4)(r+2δ−

√
4d+(r+2δ)2)

γ2(r + δ)(γ + 4)

 ,
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that developing the numerator results in the following expression

= − (a− c)γ
γ(r +

√
4d+(r+2δ)2)

4H2 + 4H1

√
4d+(r+2δ)2 − 8d (γ + 4)

γ2(r + δ)(γ + 4)
, (69)

where

4H1 = 4(4(r + 2δ)− γ(3r + 2δ)− 2γ2(r + δ)) < 0 for γ > 2,

4H2 = 4(2γ2δ (r + δ) + γ (3r + 2δ) (r + 2δ)− 4 (r + 2δ)2) > 0 for γ > 2.

As

4H2 + 4H1

√
4d+(r+2δ)2 − 8d (γ + 4) = −8γ2 (r + δ)2 for d = 0,

and the expression decreases with d, we can conclude that

4H2 + 4H1

√
4d+(r+2δ)2 − 8d (γ + 4) < 0 for d > 0,

and hence that (69) is positive establishing that τ c(0)− τnc(0) is positive.

Next, we compare the slope of the optimal policies. According to the first Riccati’s

equation: (Anc1 )2 = (2δ+ r)Anc1 + d which allows to write the slope of the optimal policy

for LCMPE given by (64) as follows

mnc =
2(2(r + 2δ)Anc1 + d(2 + γ))

γ(r + 2δ)
,

that substituting Anc1 by (52) yields

mnc =
2[d(2 + γ) + (2δ + r)2 − (r + 2δ)

√
(r + 2δ)2 + 4d]

γ(r + 2δ)
,

so that the difference between the slopes is

mnc −mc =
2

r + 2δ

(
4(2+γ)d+ (γ+4)(2δ+r)2 − (γ+4)(r+2δ)

√
(r+2δ)2+4d

γ(γ + 4)

)
. (70)

This difference is positive provided that

4(2 + γ)d+ (γ + 4)(2δ + r)2 − (γ + 4)(r + 2δ)
√

(r + 2δ)2 + 4d > 0.

Reordering terms and taking square, we get

16(2 + γ)2d2 + 4γd(r + 2δ)2(γ + 4) > 0.
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Therefore (70) is positive and consequently mnc is larger than mc.

Proof of Proposition 9

Notice that according to the expressions of the value functions (25) and (48), W c(0)

is larger thanW nc(0) provided that Cc
1 is larger than C

nc
1 . Using the expressions for these

parameters given respectively by (31) and (54), Cc
1 is larger than C

nc
1 if and only if

Σ1(γ, δ, d, r) + r
√

4d+ (r + 2δ)2Σ2(γ, δ, d, r)

+ r
√
γ(4 + γ)(4d(r + γ)2 + γ(4 + γ)(r + 2δ)2)Σ3(γ, δ, d, r) > 0, (71)

where

Σ1(γ, δ, d, r) = 2[4d2(2 + γ2) + 2d
(
4γ(2 + γ)2δ2 + 2r(2γ3 + 7γ2 + 4γ − 2)(r + 2δ)

)
+ γ(r2+2rδ+2δ2)(2γ(2+γ)2δ2+r(r+2δ)(2γ3+8γ2+7γ−4))] > 0 for γ > 2,

Σ2(γ, δ, d, r) = 4d(2 + γ)2

+ γ[(γ5 + 6γ4 + 9γ3 + 4γ + 16)δ2 + r(r + 2δ)(γ5 + 6γ4 + 9γ3 + 2γ + 8)] > 0,

Σ3(γ, δ, d, r) = 4d− γ(γ3 + 2γ2 − 3γ − 4)δ2 − r(r + 2δ)(γ4 + 2γ3 − 3γ2 − 4γ + 2)

+ 2r
√

4d+ (r + 2δ)2.

The sign of Σ3(γ, δ, d, r) depends on the value of d. For a d large enough, Σ3(γ, δ, d, r) is

positive and therefore (71) is also positive that establishes that Cc
1 > Cnc

1 . Suppose now

that this is not the case then (71) implies the following inequality(
Σ1(γ, δ, d, r) + r

√
4d+ (r + 2δ)2Σ2(γ, δ, d, r)

)2
− r2γ(4 + γ)(4d(r + γ)2 + γ(4 + γ)(r + 2δ)2)Σ3(γ, δ, d, r)

2 > 0,

that yields

χ1(γ, δ, d, r) + χ2(γ, δ, d, r)
√

4d+ (r + 2δ)2 > 0, (72)
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with

χ1(γ, δ, d, r) = Σ1(γ, δ, d, r)
2 + r2

(
4d+ (r + 2δ)2

)
Σ2(γ, δ, d, r)

2

−r2(γ(4 + γ)(4d(r + γ)2 + γ(4 + γ)(r + 2δ)2))×

{[4d−γ(γ3+2γ2−3γ−4)δ2−r(r+2δ)(γ4+2γ3−3γ2−4γ+2)]2+4r2(4d+(r+2δ)2)},

χ2(γ, δ, d, r) = 2rΣ1(γ, δ, d, r)Σ2(γ, δ, d, r)

−4r3(γ(4 + γ)(4d(r + γ)2 + γ(4 + γ)(r + 2δ)2))×

{4d−γ(γ3+2γ2−3γ−4)δ2−r(r+2δ)(γ4+2γ3−3γ2−4γ+2)}.

Once the expressions of Σ1(γ, δ, d, r),Σ2(γ, δ, d, r) and Σ3(γ, δ, d, r) have been replaced

in χ1(γ, δ, d, r) and χ2(γ, δ, d, r) and after some tedious computations carried out with

Mathematica 10.1, they can be rewritten as

χ1(γ, δ, d, r) = 8d4(2+γ)2+16d3p1(r, γ, δ)+4d2p2(r, γ, δ)+2dγp3(r, γ, δ)+γ2(r+δ)2p4(r, γ, δ),

χ2(γ, δ, d, r) = 8d3(2+γ)2+2d2p5(r, γ, δ)+4dγp6(r, γ, δ)+γ2(r+δ)2p7(r, γ, δ),

where pi(r, γ, δ), i = 1, . . . , 7 are the polynomials in terms of parameters r, γ and δ

p1(r, γ, δ) = r2γ(4 + 7γ + 2γ2) + 2rδ(−2 + 4γ + 7γ2 + 2γ3) + 2γ(2 + γ)2δ2,

p2(r, γ, δ) = r4(4−4γ−5γ2+16γ3+24γ4+12γ5+2γ6)

+ 4r3(4−4γ+3γ2+24γ3+17γ4+6γ5+γ6)δ

+ 2r2(8−28γ+39γ2+96γ3+38γ4+6γ5+γ6)δ2+4rγ(−12+27γ+40γ2+11γ3)δ3

+ 12γ2(2+γ)2δ4,

p3(r, γ, δ) = r6γ4(2 + γ)(3 + γ)2 + 2r5(8− 14γ + 33γ3 + 50γ4 + 43γ5 + 16γ6 + 2γ7)δ

+ r4(80−140γ+32γ2+329γ3+242γ4+135γ5+48γ6+6γ7)δ2

+ 4r3(32−72γ+44γ2+159γ3+76γ4+24γ5+8γ6+γ7)δ3

+ r2(64−272γ+320γ2+613γ3+208γ4+26γ5+8γ6+γ7)δ4

+ 16rγ(−6+15γ+19γ2+5γ3)δ5 + 16γ2(2+γ)2δ6,

45



p4(r, γ, δ) = r6γ4(3+γ)2 + 6r5γ4(3+γ)2δ + r4(16−40γ+29γ2+38γ3+126γ4+78γ5+13γ6)δ2

+ 4r3(16− 40γ + 29γ2 + 38γ3 + 36γ4 + 18γ5 + 3γ6)δ3

+ 4r2(16− 48γ + 43γ2 + 54γ3 + 22γ4 + 6γ5 + γ6)δ4

+ 16rγ(−4 + 7γ + 8γ2 + 2γ3)δ5 + 8γ2(2 + γ)2δ6,

p5(r, γ, δ) = r2(−8+8γ+26γ2+8γ3+9γ4+6γ5+γ6)

+ 2r(−8+24γ+30γ2+8γ3+9γ4+6γ5+γ6)δ

+ γ(2 + γ)2(12− 3γ + 2γ2 + γ3)δ2,

p6(r, γ, δ) = r4γ4(3 + γ)2 + r3(−8 + 14γ + 16γ2 − 5γ3 + 30γ4 + 23γ5 + 4γ6)δ

+ 2r2(−12 + 25γ + 22γ2 − 4γ3 + 21γ4 + 17γ5 + 3γ6)δ2

+ r(−16+60γ+40γ2−γ3+30γ4+23γ5+4γ6)δ3 + γ(2+γ)2(6−3γ+2γ2+γ3)δ4,

p7(r, γ, δ) = r4γ4(3+γ)2 + 4r3γ4(3+γ)2δ + r2(−16+40γ+3γ2−6γ3+12γ4+42γ5+7γ6)δ2

+ 2r(−16+40γ+3γ2−6γ3+26γ4+18γ5+3γ6)δ3 + 2γ(16+4γ+9γ3+6γ4+γ5)δ4.

It is straightforward to check that the polynomials pi(r, γ, δ), i = 1, . . . , 7 always take

positive values for any value of the parameters r, δ and γ > 2. Therefore, χ1(γ, δ, d, r) is

positive too (χ2(γ, δ, d, r) is also positive), and in consequence condition (72) is fulfilled,

and inequality Cc
1 > Cnc

1 is always satisfied.

Next we compare the present value of net profits for x0 = 0. First, we show that

Anc1 is lower than Ac1. Suppose that this is not the case. Then using (29) and (52) the

following inequality must hold

γ(4 + γ)(r + 2δ)−
√
γ(4 + γ)(4d(2 + γ)2 + γ(4 + γ)(r + 2δ)2)

2(2 + γ)2

≤ 1

2
(r + 2δ −

√
(r + 2δ)2 + 4d),

that simplifying terms gives

(2 + γ)2
√

(r + 2δ)2 + 4d− 4(r + 2δ)

≤
√
γ(4 + γ)(4d(2 + γ)2 + γ(4 + γ)(r + 2δ)2),
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where the left-hand side is positive for d ≥ 0. Notice that the expression is positive for

d = 0 and increasing with d. Taking square in both sides of the inequality yields

(r + 2δ)2 + 8d ≤ (r + 2δ)
√

(r + 2δ)2 + 4d,

that taking square again leads to the following contradiction

3 (r + 2δ)2 d+ 16d2 ≤ 0.

Thus, we can conclude that Anc1 is lower than Ac1.

Next, we compare Cc
2 and C

nc
2 . Notice that for x0 = 0, V c(0) = Cc

2 and V
nc(0) = Cnc

2 .

Taking into account the expressions of Cc
2 and C

nc
2 given by (41) and (63) Cc

2 < Cnc
2 if

and only if

−
[
(4− 2γ + γ2) (Anc1 )2 − 2γ(2 + γ)(r + δ)Anc1 + γ2(1 + 2γ)(r + δ)2

]
×
[
(2 + γ)2Ac1 − γ(4 + γ)(r + δ)

]2
+
[
(Ac1)

2 (2+γ)3−2γ(8+6γ+γ2)(r+δ)Ac1+γ
2(8+9γ+2γ2)(r+δ)2

]
γ3(r+δ−Anc1 )2 < 0.(73)

With the help of Mathematica 10.1 this expression can be written as the following product[
−γ(r+δ) (Ac1(1+γ)(2+γ)− 2γ(r+δ)) + Anc1

(
2(2+γ)Ac1 + γ(−4+γ+γ2)(r+δ)

)]
×{

Anc1
[
2(2+γ)2Ac1 − γ(8+γ(1+γ)(2+γ))(r+δ)

]
+γ(r+δ)

[
−(1+γ)(2+γ)2Ac1 + 2γ(2+4γ+γ2)(r+δ)

]}
where the factor in curly brackets is positive provided that both Ac1 and A

nc
1 are negative

values. Then (73) is negative if and only if

−γ(r+δ) (Ac1(1+γ)(2+γ)− 2γ(r+δ)) + Anc1
(
2(2+γ)Ac1 + γ(−4+γ+γ2)(r+δ)

)
> 0,

that can be rewritten as

−γ(r+δ) (Ac1(1+γ)(2+γ)− 2γ(r+δ)) + γ(−4+γ+γ2)(r+δ)Anc1 + 2(2+γ)Anc1 A
c
1 > 0.

Taking into account that Ac1 > Anc1 , a suffi cient condition that ensures the fulfillment of

the last inequality is given by

−γ(r+δ) (Ac1(1+γ)(2+γ)− 2γ(r+δ)) + γ(−4+γ+γ2)(r+δ)Anc1 + 2(2+γ) (Anc1 )2 > 0.
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Substituting the expressions of Ac1 and Anc1 and rearranging terms, the inequality

above reads

2(2d(2 + γ)2 + r2(4 + 2γ2 + γ3) + r(16 + 4γ + 3γ2 + γ3)δ + 2(8 + 4γ + γ2)δ2)

+γ(1 + γ)(r + δ)
√
γ(4 + γ)[4d(r + γ)2 + γ(4 + γ)(r + 2δ)2]

−(2 + γ)
(
r(4− 2γ + γ2 + γ3) + (8 + γ2 + γ3)δ

)√
4d+ (r + 2δ)2 > 0.

The first and second lines in the inequality above are positive, while the third one is

negative. Therefore, the inequality above is equivalent to the following inequality

[
2(2d(2 + γ)2 + r2(4 + 2γ2 + γ3) + r(16 + 4γ + 3γ2 + γ3)δ + 2(8 + 4γ + γ2)δ2)

+γ(1 + γ)(r + δ)
√
γ(4 + γ)[4d(r + γ)2 + γ(4 + γ)(r + 2δ)2]

]2
−
[
(2 + γ)

(
r(4− 2γ + γ2 + γ3) + (8 + γ2 + γ3)δ

)]2
(4d+ (r + 2δ)2) > 0.

After some calculus, the expression above can be rewritten as:

Ω1(γ, δ, d, r) + Ω2(γ, δ, d, r)
√
γ(4 + γ)[4d(r + γ)2 + γ(4 + γ)(r + 2δ)2] > 0, (74)

where Ω1(γ, δ, d, r) and Ω2(γ, δ, d, r) are positive and given by

Ω1(γ, δ, d, r) = γ(1+γ)(r+δ)×[
2d(2+γ)2+r2(4+γ2(2+γ)) + r(16+γ(4+γ(3+γ)))δ + 2(8+γ(4+γ))δ2

]
,

Ω2(γ, δ, d, r) = 4d2(2+γ)4

+4dγ(2+γ2)(r+δ)
[
r(4+γ(−1+γ+3γ2+γ3)) + (2+γ)(4−3γ+γ3)δ

]
+γ2

[
r4(16+γ(1+γ)(−4+γ(2+γ)(4+γ))) + r3(80+γ(1+γ)(−28+γ(32+γ(31+6γ))))δ

+ r2(128+γ(−104+γ(−40+γ(3+γ)(35+13γ))))δ2

+4r(−4+γ(2+γ))(−4+9 + γ(10+3γ)))δ3+4γ(−24+γ(−16+γ(3+γ(5+γ))))δ4
]
.

Ω1(γ, δ, d, r) is always positive, and it can be easily proved that Ω2 is positive for any

value of γ greater than 2. Therefore, the inequality in (74) is always satisfied for γ > 2,

and consequently, Cc
2 < Cnc

2 what implies that V c(0) is lower than V nc(0).
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Figure 1: Optimal strategies and steady state

1


