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Abstract

Fisheries are often managed by harvest quotas and additional gear restrictions to
protect young fish. We study the idea to deregulate fishing gear choice, leaving
fishing quotas as the only instrument of the regulator. In this second-best setting,
we study a simple change of “currency” for individual fishing quotas: Measuring
quotas in terms of numbers rather than in terms of biomass could improve the
incentives to target larger fish, thus solving the persistent growth overfishing prob-
lem without gear restrictions. The intuition is clear: A fisher has much stronger
incentives to select for large fish when she or he has the right to catch a number
x of individual fish, rather than x tons of fish. We theoretically derive conditions
under which this simple change in the type of quotas leads to welfare gains. We
find that the age-dependence of prices, fish weights and natural mortality rates
all play a role in determining whether biomass quotas outperform number quotas.
We then quantify the effect of biomass and number quotas in an age-structured
bio-economic model for the Eastern Baltic Cod trawl fishery. We find that steady-
state profits under second-best number-quota management are only 0.5% below
the first-best.
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1 Introduction

Fisheries have the potential to provide food and livelihood for millions of people (Smith

et al. 2010). After a long history of over-exploitation (Worm et al. 2006), the indicators

of many assessed fish stocks have been improving in recent years (Costello et al. 2012).

However, the age- and size-structure of these resources has often been severely distorted.

The systematic removal of fish before they have grown old and large (growth overfish-

ing) may have destabilizing, and potentially irreversible, consequences (Anderson et al.

2008, Stenseth and Rouyer 2008). Finding ways to correct for the incentives of growth

overfishing is therefore of immediate policy relevance.

It is clear that undifferentiated biomass quotas will not be able to solve the problem

of growth overfishing (Costello and Deacon 2007, Diekert 2012, Quaas et al. 2013).

As fully delineating quotas is prohibitively costly, individual fishing quotas are often

coupled with gear restrictions aimed at protecting small fish. Typical measures include

minimum size limits and minimum mesh sizes. Given that individual fishing quotas

have many desirable properties that rendered previous command and control measures

such as season length restrictions unnecessary, we analyze the need for gear restrictions

in a deregulated second-best setting: While the regulator sets the annual fishing quota,

the fishermen are free to select the target fish size. In this second-best setting, we

study if measuring quotas in terms of numbers (instead of in terms of biomass what is

currently the predominant practice) could considerably improve the incentives for not

selecting age groups that are too young and small. The intuition is clear: A fisher has

much stronger incentives to select for large fish when she or he has the right to catch a

number x of individual fish, rather than x tons of fish.

We set up a simple theoretical model of an age-structured fishery to show that is

intuition is correct, but may be misleading: In some cases, a biomass quota is actually

more efficient than a number quota. Given the lack of a general ranking of these in-

struments, it is an empirical question which is the superior one. We thus quantify the

welfare effect of either management approach for the Baltic cod trawl fishery. For this

fishery, the second-best regulation by means of number quotas comes very close to the

first-best outcome in steady state, with some efficiency losses in the transition period.

The second-best biomass quota management performs worse than the second-best num-

ber quota management, but also leads to a fairly efficient steady state with only about

4% efficiency losses compared to the first best. The reason is that for Baltic Cod, fish

prices strongly increase with the size of individual fish.

Our paper contributes to the growing literature on age-structured modeling in fish-
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eries, pioneered by Tahvonen (2009). With the exception of Diekert (2012), Quaas et al.

(2013), this literature has been focusing on optimal fishery management. We extent this

state-of-the art in methodical terms by considering the strategic interaction between the

regulator of the fishery – who sets the fishing quotas – and fishermen – who choose mesh

sizes.

To influence this strategic interaction, we propose the introduction of number quotas.

Although the idea of “changing the currency” is conceptually simple, assessing its welfare

effects requires a detailed age-structured bio-economic model.

The paper proceeds as follows: In section 2, we provide the simplest possible charac-

terization of an age-structured fishery to discuss the main underlying forces that deter-

mine when management with quotas in terms of numbers and/or biomass can achieve

the first-best and when not. We then extend this model to account for stock-dependent

harvesting costs and imperfect selectivity in section 3. Throughout section 3, we illus-

trate our theoretical findings using an empirical model of the Eastern Baltic Cod trawl

fishery. Section 4 concludes the paper with a discussion of the results.

2 Simple two age-class model

Throughout this section, we first describe the socially optimal harvesting pattern and

then study the efficiency of biomass- or number-based quota management approaches

when fishermen choose fishing gear such as to maximize their current profit. To highlight

the key underlying factors that determine the harvesting pattern, we use the most simple

age-structured model, considering two age classes only. We assume perfect selectivity

and abstract from harvesting costs (or assume that harvesting cost do not depend on

stock size or gear selectivity).

Let xit denote the stock number of age-group i in period t, wi weight-at-age, pi the

ex-vessel price per kilogram of fish and hit the number of fish that are harvested. Let

αi be the natural survival rate of fish that have not been harvested in period t. The

number of fish in age class 2 at the beginning of period t + 1 follows as the number

of fish in age class 1 that have not been harvested in period t and that have survived

natural mortality, α1 (x1t − h1t), plus the fish that stay in age class 2:

x2,t+1 = α1 (x1t − h1t) + α2 (x2t − h2t) (1)

Using ϕ(·) to denote the stock-recruitment function and γi to denote maturity-at-age,
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recruitment into age class 1 can be described as

x1,t+1 = ϕ(γ1 x1t + γ2 x2t) (2)

As fish don’t shrink, we have w2 > w1. Furthermore, we assume that p1 6= p2, p1w1 6=
p2w2 and p1w1

α1
6= p2w2

α2
to avoid tedious boundary cases. In most cases, we have p1 < p2

(Asche et al. 2015, Zimmermann and Heino 2013). Still, the case p1 > p2 may be

explained by price reductions for larger fish if their processing is costlier than that of

smaller fish (in case smaller fish are common, i.e. if the fish processing industry has

adapted to persistent growth overfishing) or if toxins accumulate in the fish during their

life span.

First-best management

The Lagrangian for the problem to maximize the present value of revenues, using a

discount factor 0 < b < 1, is given by

L =
∞∑
t=0

bt

{
p1w1 h1t + p2w2 h2t + λt (α1 (ϕ(γ1 x1t + γ2 x2t)− x1,t+1)

+ µt (α1 (x1t − h1t) + α2 (x2t − h2t)− x2,t+1)

}
(3)

The first-order conditions for the optimal catch numbers h∗1t, h
∗
2t are

h1t
∂L

∂h1t
= 0 and

∂L

∂h1t
= p1w1 − µt α1 ≤ 0 (4)

h2t
∂L

∂h2t
= 0 and

∂L

∂h2t
= p2w2 − µt α2 ≤ 0 (5)

From (4) and (5), we conclude that the solution pattern for optimal harvesting is:

h∗1t > 0, h∗2t = 0 if p1w1/α1 > p2w2/α2 (6)

h∗1t = 0, h∗2t > 0 if p1w1/α1 < p2w2/α2 (7)

The exact values for h∗1t in the first case, and for h∗2t in the second case, depend on

all first-order conditions listed in Appendix A. Here, we are solely interested in the

selectivity pattern. The term piwi/αi can be called the “mortality adjusted biovalue”

of age group i and clearly, the age group with the higher mortality adjusted biovalue

should be harvested. The intuition is the following:
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When the survival rate of age-group 1 is the same as the survival rate of age group

2, and prices are approximately equal, too, it is best to harvest the heavier individuals.

Conversely, when the weight are approximately equal and survival rates identical, it is

best to harvest individuals of the age-class that obtains the higher price. When the

biovalue (piwi) of the two age groups the same (when all prices and weights are equal,

or when the amount by which age group 2 is heavier than age group 1 is exactly canceled

by the price differential between age group 1 and age group 2) , we should harvest the

age-group with the lower survival rate (lower αi), simply because it will succumb to

natural mortality otherwise.

Management with individual quotas

Consider many fishermen who maximize short-run profits subject to an individual quota

Qz. The quota can either be measured in terms of biomass, e.g. in kilograms of fish, or

in terms of the number of fish caught:

Qz with z ∈

B catch measured in biomass,

H catch measured in number of fish

 (8)

Consider first the case of a biomass quota QB. The problem of a representative fisherman

is:

max
h1t,h2t

{p1w1 h1t + p2w2 h2t} subject to w1 h1t + w2 h2t ≤ QB

= max
h1t

{
p1w1 h1t + p2 (QB − w1 h1t)

}
(9)

and the solution is:

h1t =
QB

w1

, h2t = 0 if p1 > p2 (10)

h1t = 0, h2t =
QB

w2

if p1 < p2 (11)

Now consider the problem of a representative fisherman with a number quota QN :

max
h1t,h2t

{p1w1 h1t + p2w2 h2t} subject to h1t + h2t ≤ QN

= max
h1t

{
p1w1 h1t + p2w2 (QN − h1t)

}
(12)
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Under this management regime, the fisher will choose:

h1t = QN , h2t = 0 if p1w1 > p2w2 (13)

h1t = 0, h2t = QN if p1w1 < p2w2 (14)

We can now characterize the different ways to measure quotas (using sgn{x} to denote

the sign of x).

Proposition 1. For the simple two-age-class model without fishing costs and with perfect

selectivity,

• both biomass quotas and number quotas can implement first best if:

sgn {p1 − p2} = sgn {p1w1 − p2w2} = sgn {p1w1/α1 − p2w2/α2} . (15)

• number quotas are better than biomass quotas (and implement first best) if

sgn {p1 − p2} 6= sgn {p1w1 − p2w2} = sgn {p1w1/α1 − p2w2/α2} . (16)

• biomass quotas are better than number quotas (and implement first best) if

sgn {p1w1 − p2w2} 6= sgn {p1 − p2} = sgn {p1w1/α1 − p2w2/α2} . (17)

• neither instrument can implement first best, not even in this very simple model, if

sgn {p1 − p2} = sgn {p1w1 − p2w2} 6= sgn {p1w1/α1 − p2w2/α2} . (18)

Proof. Follows directly from combining (6)-(7) with (10)-(11) and (13)-(14).

Intuitively, when the fishermen have opportunity costs for every kilogram they har-

vest, they are only interested in the relative price per kg. When they have opportunity

costs per harvested individual, they care both about the price and the weight per in-

dividual (the biovalue). The social planner, however, takes the full (shadow) price into

account by also considering the relative survival rates of both age classes (the mortality

adjusted biovalue).

We presented this simple model to underline that no quota measure outperforms the

other quota measure a priori. If one excludes the possibility of p2 < p1, the incentives

of fishermen with number or biomass quotas align in our simple model. Their common
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interest in catching the larger fish may vanish if one takes imperfect selectivity and

stock-dependent fishing costs into account. This is done in the following section.

3 Model with imperfect selectivity and fishing costs

Actual fishing gear selects for size groups only imperfectly. This imperfect selectivity

renders it impossible for the fisherman to exactly choose the number of fish he wants

to remove from each age class. We model imperfect selectivity by assuming that the

fisherman can only adjust his fishing effort Et and the mesh size σt of his fishing net.

Let qi(σt) ∈ [0, 1] denote the retention probability of a fish of age i entering a net with

mesh size σt. The larger the mesh size, the lower the probability that a fish entering the

net is caught, q′i(·) < 0, lim
σt→0

qi(σt) = 1, lim
σt→∞

qi(σt) = 0. We have depicted exemplary

retention probability curves from our empirical example of the Eastern Baltic Cod trawl

fishery in Figure 1.
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Figure 1: Retention probabilities of Eastern Baltic Cod age i = 4, 6, 8 entering a trawl
net with mesh size σt.

The total actual catch Hz
t can either be measured in total biomass caught (z = B)

or in the total number of fish caught (z = N),

Hz
t with z ∈

B catch measured in biomass,

H catch measured in number of fish

 (19)

For fishing with mesh size σt we assume that the age-composition in catch equals the

age-composition of all fish in the stock that are vulnerable to fishing with σt. The
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underlying basic assumption is that the fish age distribution is equal across all fish

accumulations within the geographic range of the stock. Following this assumption,

fishing location choice has no effect on the age-composition in catch. This assumption

underestimates the capabilities of fishermen to influence fishing selectivity. Modeling

fishing selectivity as being influenced by both fishing location choice and fishing gear

choice would require a spatially explicit dynamic model. This is beyond the scope of

this paper, however. Instead, we focus on fishing gear choice as it is the margin that

is predominantly regulated in actual fisheries management. The assumption that the

age-composition in catch equals the age-composition of all fish vulnerable at mesh size

σt can either be formulated in biomass or in number terms:

hjt
HN
t

=
qj(σt)xjt∑n
i=1 qi(σt)xit

(20)

wjhjt
HB
t

=
wj qj(σt)xit∑n
i=1wi qi(σt)xit

(21)

Equations (20) and (21) are equivalent representations of the above mentioned assump-

tion. Tahvonen et al. (2016) denote the part of the total stock biomass that is vulnerable

to fishing the “efficient biomass” Bt(σt,xt),

Bt(σt,xt) =
n∑
i=1

wi qi(σt)xit. (22)

Following the same idea, let Nt(σt) denote the “efficient stock size”, i.e. the number of

fish that are vulnerable to fishing with with mesh size σt:

Nt(σt,xt) =
n∑
i=1

qi(σt)xit (23)

Combining (20) and (21) yields a conversion rule for the two catch measures

HB
t

Bt(σt)
=

HN
t

Nt(σt)
(24)

To simplify notation in the following, both sides of equation (24) can be written in

standardized catch units

ωz(σt,xt)H
z
t with ωz(σt) =

B(σt)
−1 if z = B

N(σt)
−1 if z = N

(25)
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From (20), (21), (24) and (25) follows for the number of fish caught from age class i:

hit = qi(σt)xit ωz(σt)H
z
t (26)

A standard assumption in fisheries economics is that fishing costs are linear in catch.

With exogenous landing prices, it follows that fishing revenues are linear in catch as

well. Using (24), fishing profits can thus be written as a linear function of standardized

catch

Πt(σt, H
z
t ) = πt(σt)ωz(σt)H

z
t (27)

The term πt(σt) can be interpreted as the marginal and average revenue of one unit of

the standardized catch measure ωz(σt)H
z
t .

First-best management

To prevent unrealistic pulse fishing solutions in the first-best case, we insert the annual

profits from fishing into a concave positive monotone transformation g (·) with g′ (·) >
0, g′′ (·) < 0.

The optimization problem of social planner follows as:

max
(Hz

t )
∞
t=1,(σt)

∞
t=1

L =
∞∑
t=1

bt

{
g

((
rt(σt)− ct(σt)

)
ωz(σt)H

z
t

)

− λ0,t
[
x1,t+1 − ϕ(xt)

]
−

n−2∑
i=1

λit

[
xi+1,t+1 − αi (1− qi(σt)ωz(σt)Hz

t )xit

]
(28)

− λn−1t
[
xn,t+1 − αn−1 (1− qn−1(σt)ωz(σt)Hz

t )xn−1t

− αn (1− qn(σt)ωz(σt)H
z
t )xn,t

]}

To simplify notation, we have reformulated (28) using λnt ≡ λn−1t (see Appendix B).

For Hz
t > 0, g′ (·) 6= 0, a necessary condition for the first-best mesh size in period t can
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be written as(
r′t(σt)− c′t(σt)− s′t(σt)/g′ (·)

)
ωz(σt) +

(
rt(σt)− ct(σt)− st(σt)/g′ (·)

)
ω

′

z(σt) = 0,

(29)

where we have defined st(σt) =
∑n

i=1 λit αi qi(σt)xit, which is the value of efficient

biomass in stock.

We use the Eastern Baltic Cod trawl fishery as our empirical example as extensive

gear selectivity experiments have been carried out in this fishery (Madsen 2007). Eastern

Baltic Cod is the largest cod stock in the Baltic Sea and trawling the most important

gear type. The details of our numerical model can be found in Appendix D.

Using the AMPL software package (Fourer et al. 2009), we solve the first-best op-

timization problem (28) numerically. The starting year of our computations is 2013.

The results are summarized in Figure 2. These results are similar to those of Tahvonen
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Figure 2: First-best management of Eastern Baltic Cod.

et al. (2016) except for the optimal mesh size. The lower optimal mesh size reported by

Tahvonen et al. (2016) is most likely due to their inverse demand function not depending

on fish size.
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Management with individual quotas

As in our simple model, each fisherman is regulated by an individual quota Qz
t . The

fisherman observes Qz
t and adjusts mesh size σt and actual annual catch Hz

t myopically

in each period t. His static optimization problem follows as:

max
σt,Hz

t

Πt =
(
rt(σt)− ct(σt)

)
ωz(σt)H

z
t (30)

s.t. Hz
t ≤ Qz

t

Whenever there exists a mesh size that yields a positive marginal profit per unit of

catch, (rt(σt)− ct(σt))ωz(σt) > 0, the quota constraint becomes binding. The mesh size

σ̃t that delivers the most profitable catch composition to deplete the quota follows as

(cf. Appendix C)(
r′t(σ̃t)− c′t(σ̃t)

)
ωz(σ̃t) +

(
rt(σ̃t)− ct(σ̃t)

)
ω

′

z(σ̃t) = 0 (31)

Comparison of (31) with the first-best mesh size condition (29) illustrates that the

fisherman disregards the effect of his mesh size choice onto future periods. The fraction

of each age class that survives natural mortality and is vulnerable to fishing with mesh

size σt, αi qi(σt)xit, is valued by the social planner by its shadow price, λit. The effect of

the mesh size onto the aggregated shadow value st(σt) =
∑n

i=1 λit αi qi(σt)xit is absent

in eq. (31).

To depict the fishermen incentives under biomass quotas and number quotas, we

consider the solution of (31) for the example of the Eastern Baltic Cod trawl fishery in

Figure 3. The leftmost points on the y-axis depict the preferred mesh sizes of fishermen

targeting the fish stock in year 2013 (the starting point of our simulations). Fishermen

having biomass quotas would use σ1 = 84 mm whereas fishermen having number quotas

would use σ1 = 122 mm.

The solid lines indicate the preferred mesh sizes if additional fish of age i = 8 would

be added to the stock in year 2013, holding all other age classes constant. Using dashed

lines (dotted lines), the same idea of comparative statics is applied to show the effect of

increasing the number of fish in age class 7 (age class 6), holding all other age classes

constant. Interestingly, Figure 3 shows that the minimum mesh size regulation (EC

2010) is binding under the current system of biomass quotas. Under number quotas,

this would not be the case.
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Figure 3: Optimal mesh sizes for fishermen with biomass quotas (red) or number quotas
(blue) and more fish added relative to x1t.

Second-best management with individual quotas

If mesh size is deregulated, the social planner has to anticipate the mesh size optimization

carried by fishermen in every period t when calculating the second-best quota trajectory

(Qz
t )
∞
t=1. This bilevel optimization problem can be simplified by using the first-order

condition (31) from the lower-level optimization problem of the fisherman as a constraint

in the upper-level second-best optimization problem of the social planner:

max
(Qzt )

∞
t=1,(σt)

∞
t=1

L =
∞∑
t=1

bt

{
g

((
rt(σt)− ct(σt)

)
ωz(σt)Q

z
t

)

− λ0,t
[
x1,t+1 − ϕ(xt)

]
−

n−2∑
i=1

λit

[
xi+1,t+1 − αi (1− qi(σt)ωz(σt)Qz

t )xit

]
(32)

− λn−1t
[
xn,t+1 − αn−1 (1− qn−1(σt)ωz(σt)Qz

t )xn−1t

− αn (1− qn(σt)ωz(σt)Q
z
t )xn,t

]
+ µt

[((
r′t(σt)− c′t(σt)

)
ωz(σt) +

(
rt(σt)− ct(σt)

)
ω

′

z(σt)

)
Qz
t

]}
,
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where the last line of (32) requires (31) to hold only for Qz
t > 0.

For our example of the Eastern Baltic Cod trawl fishery, we have plotted the second-

best values relative to their first-best levels in Figure 4. A comparison of the steady-state
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Figure 4: Deviations relative to first-best management: Second-best management with
biomass quotas (red circles) and number quotas (blue circles).

levels reveals that the spawning stock sizes are nearly equal: The second-best stock size

with biomass quotas (number quotas) deviates from the first-best by −1.5% (+0.8%).

At comparable stock sizes, fishermen with biomass quotas (number quotas) use a mesh

size that −9.5% below (+3.3% above) the first-best level. Although the fishermen with

number quotas fish more selectively and hence more costly than socially optimal, their

resulting revenue and cost increases relative to the first-best balance well, such that their

profit is only −0.5% below the first-best level. The steady-state profits of fishermen with

biomass quotas are −4.0% below the first-best profits.

With respect to the transition dynamics, the fishermen with biomass quotas face

much stricter quotas in the rebuilding phase than the fishermen with number quotas.

For example, the second-best biomass quota in the first year is −34.3% below the first-

best catch in terms of biomass, whereas the second-best number quota is only −11.7%

below the first-best catch in numbers. Because fishermen with biomass quotas prefer

very low mesh sizes if large fish are absent in the stock (cf. Figure 3), the regulator
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reacts to these preferences by cutting down biomass quotas more sharply than number

quotas in the rebuilding phase.

4 Conclusions

The deviations of the second-best profits relative to their first-best levels could be inter-

preted as the costs of deregulating the fishing gear choice. The question if these costs

of deregulation outweigh the alternative costs of enforcing gear restrictions remains an

empirical one and has to be decided on a case-by-case basis for each type of fishery.

This also holds true for the question which second-best quota measure performs better

in a specific fishery.

Nevertheless, the aim of this paper was to show that a change of “currency” in the

way fishery quotas are measured may create substantial economic benefits simply by

changing the incentives of fishermen. In most fisheries that face a growth overfishing

problem, fish are usually sorted into size categories, or it would be feasible to do so at low

costs. Estimating the number of fish landed should thus not be a problem of practical

importance. If this is the case, switching to number quotas may be a simple way of

increasing the economic performance of a fishery substantially. Yet, this presupposes

that the quotas are set at their respective second-best levels, while in reality quotas are

still often set at inefficiently high levels. Our analysis suggests that fishery management

should shift the focus from designing a plethorea of different management instruments,

including lots of gear restrictions, to setting the quotas right.
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A Simple two age-class model: First-best

The complete first-order conditions for (3) are

h1t
∂L

∂h1t
= 0 and

∂L

∂h1t
= p1w1 − µt α1 ≤ 0 (33)

h2t
∂L

∂h2t
= 0 and

∂L

∂h2t
= p2w2 − µt α2 ≤ 0 (34)

∂L

∂x2t
= λt γ1 ϕ

′ (γ1 x1t + γ2 x2t) + µt α1 −
1

b
λt−1 = 0 (35)

∂L

∂x2t
= λt γ2 ϕ

′ (γ1 x1t + γ2 x2t) + µt α2 −
1

b
µt−1 = 0 (36)

B Model with imperfect selectivity and fishing costs:

First-best

Using λn,t ≡ λn−1t and st(σt) =
∑n

i=1 λit αi qi(σt)xit, the problem (28) can be reformu-

lated as

max
(Hz

t )
∞
t=1,(σt)

∞
t=1

L =
∞∑
t=1

bt

{
g

((
rt(σt)− ct(σt)

)
ωz(σt)H

z
t

)
(37)

+ λ0,t ϕ(xt) +
n∑
i=1

(αi λit xit − λi−1 xi,t+1)− st(σt)ωz(σt)Hz
t

A necessary condition for the first-best mesh size in period t follows as

∂L

∂σt
=g′ (·)

((
r′t(σt)− c′t(σt)

)
ωz(σt) +

(
rt(σt)− ct(σt)

)
ω

′

z(σt)

)
Hz
t (38)

−
(
s′t(σt)ωz(σt) + st(σt)ω

′

z(σt)

)
Hz
t

!
= 0

C Model with imperfect selectivity and fishing costs:

Static fishermen optimization problem

First-order conditions of the fisherman’s static optimization problem (30) with λ̄t for

the quota constraint:
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∂Πt

∂σt
=

((
r′t(σt)− c′t(σt)

)
ωz(σt) +

(
rt(σt)− ct(σt)

)
ω

′

z(σt)

)
Hz
t ≤ 0 (39)

∂Πt

∂Hz
t

=
(
rt(σt)− ct(σt)

)
ωz(σt)− λ̄t ≤ 0 (40)

∂Πt

∂λ̄t
= Qz

t −Hz
t ≥ 0 (41)

∂Πt

∂σt
σt = 0,

∂Πt

∂Hz
t

Hz
t = 0,

∂Πt

∂λ̄t
λ̄t = 0, σt, H

z
t , λ̄t ≥ 0 (42)

Selecting {Hz
t = 0, σt = 0} from the numerous solutions in case of maxσt≥0{Rt(σt) −

Ct(σt)} ≤ 0 to shorten notation, the optimal fisherman behaviour can be summarized

as:

Hz
t =

0, for maxσt≥0{rt(σt)− ct(σt)} ≤ 0

Qz
t for maxσt≥0{rt(σt)− ct(σt)} > 0

(43)

σt =

0, for maxσt≥0{rt(σt)− ct(σt)} ≤ 0

σ̃t for maxσt≥0{rt(σt)− ct(σt)} > 0
(44)

with σ̃t defined by (31). As lim
σt→0

(
r′t(σt) − c′t(σt)

)
ωz(σt) +

(
rt(σt) − ct(σt)

)
ω

′
z(σt) = 0,

the case of {Hz
t = Qz

t , σt = σ̃t = 0} is included in (31).

D Empirical model for the Eastern Baltic Cod trawl

fishery

We use a profit-margin condition to estimate χ and c0. This condition can be formulated

as

πt ≡
(

Profit

Revenue

)
t

=
rt(σt)− ct(σt)

r(σt)

Inserting c(σt) = c0Bt(σt)
1−χ, r(σt) =

∑n
i=1 piwi qi(σt)xit andBt(σt) =

∑n
i=1wi qi(σt)xit

and taking logarithms after rearranging terms yields

ln

(
(1− πt)

n∑
i=1

piwi qi(σt)xit

)
= ln c0 + (1− χ) ln

(
n∑
i=1

wi qi(σt)xit

)
(45)
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For the retention probability qi(σt), we model a trawl net with a New Bacoma escape

window in the codend (Feekings et al. 2013) as it is the most commonly used gear in

the fishery. In a recent survey (EC 2013), 45 out of 66 interviewed fishermen used a

codend with a New Bacoma escape window. Based on selectivity parameters taken from

Madsen (2007), the retention probability qi(σt) can be formulated as

qi(σt) = 1/
(

1 + e
14.95−39.45 li

σt

)
, (46)

where li describes the mean length-at-age of age class i. Both length-at-age li and

weight-at-age wi data are taken from the Baltic International Trawl Survey, accessed

through the supplementary material of Froese and Sampang (2013). Stock numbers in

age class i and year t are taken from ICES (2014). Age-dependent prices for cod have

been computed from price reports published by the German Federal Office of Agriculture

and Food (BLE 2016).

Values for pi, wi, qi(σt), li, xit have been available for the period 2003-2012. Exploit-

ing the fact that quotas were non-binding in 2003 and since 2008, the open-access zero

profit condition πt = 0 must hold for 2003, 2007 − 2012. As values of Bt in the period

2004-2007 are similar to those in the period with non-binding quotas, we assume πt = 0

for the years 2003-2007 as well. The mesh sizes σt are taken from the official regulations

(Feekings et al. 2013, EC 2010).

Using simple OLS with n = 10, estimating (45) yields ln c0 = 2.038 (0.509) and

1 − χ = 0.621 (0.125), standard error in parentheses. These estimates were used to

calculate c0 = 0.379 and χ = 7.676. A Ricker (1954) stock-recruitment function is used

to model recruitment as

x1,t+1 = ϕ(xt) = φ0

(
n∑
i=1

wi γi xit

)
e−(

∑n
i=1 wi γi xit)/φ1 , (47)

where the maturity-at-age values γi are taken from ICES (2014) and χ0 = 1.699, χ1 =

549.451 are taken from Quaas et al. (2016). The instantaneous natural mortality rate

is set to 0.2 for all age classes, which corresponds to an annual natural survival rate of

αi = 0.82. All age-dependent parameter values are summarized in Table 1. To prevent

pulse fishing, we use g (·) = (·)0.8 in our model.

The starting year of our computations is 2013, the discount factor was set to b = 0.95,

corresponding to a discount rate of about 5%. The AMPL software package (Fourer

et al. 2009) was used to solve the optimization problems (28) and (32) with T = 100

numerically.
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age class 1 2 3 4 5 6 7 8
pi 0 0 1.22 1.22 1.75 1.75 2.27 2.27
wi 0 0.16 0.45 0.81 1.20 1.80 2.65 3.65
li 0 25.09 34.95 42.76 49.24 56.59 63.70 70.10
αi 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
γi 0 0.13 0.36 0.83 0.94 0.96 0.96 0.98
xi,0 194.853 173.859 105.768 63.768 28.198 14.333 5.447 2.298

Table 1: Age-dependent parameter values of the Eastern Baltic Cod fishery example.

References

Anderson, C. N. K., Hsieh, C.-h., Sandin, S. A., Hewitt, R., Hollowed, A., Beddington, J.,
May, R. M., and Sugihara, G. (2008). Why fishing magnifies fluctuations in fish abundance.
Nature, 452(7189):835–839.

Asche, F., Chen, Y., and Smith, M. D. (2015). Economic incentives to target species and fish
size: Prices and fine-scale product attributes in norwegian fisheries. ICES Journal of Marine
Science, 72(3):733–740.

BLE, editor (2016). Bericht über die Fischerei und die Marktsituation für Fischereierzeugnisse
in der Bundesrepublik Deutschland.

Costello, C. and Deacon, R. (2007). The efficiency gains from fully delineating rights in an itq
fishery. Marine Resource Economics, 22(4):347–361.

Costello, C., Ovando, D., Hilborn, R., Gaines, S. D., Deschenes, O., Lester, S. E., and (Keine
Angabe) (2012). Status and solutions for the world’s unassessed fisheries. Science (New
York, N.Y.), 338(6106):517–520.

Diekert, F. K. (2012). Growth overfishing: The race to fish extends to the dimension of size.
Environmental and Resource Economics, 52(4):549–572.

EC (2010). Commission regulation (eu) no 686/2010 of 28 july 2010 amending council regula-
tion (ec) no 2187/2005 as regards specifications of bacoma window and t90 trawl in fisheries
carried out in the baltic sea, the belts and the sound.

EC, editor (2013). Collaboration between the scientific community and the fishing sector to
minimize discards in the Baltic cod fisheries: Full Study Report.

Feekings, J., Lewy, P., Madsen, N., and Marshall, C. T. (2013). The effect of regulation
changes and influential factors on atlantic cod discards in the baltic sea demersal trawl
fishery. Canadian Journal of Fisheries and Aquatic Sciences, 70(4):534–542.

Fourer, R., Gay, D. M., and Kernighan, B. W. (2009). AMPL: A modeling language for
mathematical programming. Brooks/Cole, Belmont, Ca., 2. ed., 5. [print.] edition.

Froese, R. and Sampang, A. (2013). Potential indicators and reference points for good environ-
mental status of commercially exploited marine fishes and invertebrates in the german eez:
World wide web electronic publication, available from http://oceanrep.geomar.de/22079/.

18



ICES, editor (2014). Report of the Baltic Fisheries Assessment Working Group (WGBFAS),
3-10 April 2014, ICES HQ, Copenhagen, Denmark., ICES CM 2014/ACOM:10. 919 pp.

Madsen, N. (2007). Selectivity of fishing gears used in the baltic sea cod fishery. Reviews in
Fish Biology and Fisheries, 17(4):517–544.

Quaas, M. F., Requate, T., Ruckes, K., Skonhoft, A., Vestergaard, N., and Voss, R. (2013).
Incentives for optimal management of age-structured fish populations. Resource and Energy
Economics, 35(2):113–134.

Quaas, M. F., Reusch, T. B. H., Schmidt, J. O., Tahvonen, O., and Voss, R. (2016). It is the
economy, stupid! projecting the fate of fish populations using ecological-economic modeling.
Global change biology, 22(1):264–270.

Ricker, W. E. (1954). Stock and recruitment. Journal of the Fisheries Research Board of
Canada, 11(5):559–623.

Smith, M. D., Roheim, C. A., Crowder, L. B., Halpern, B. S., Turnipseed, M., Anderson,
J. L., Asche, F., Bourillon, L., Guttormsen, A. G., Khan, A., Liguori, L. A., McNevin, A.,
O’Connor, M. I., Squires, D., Tyedmers, P., Brownstein, C., Carden, K., Klinger, D. H.,
Sagarin, R., and Selkoe, K. A. (2010). Economics. sustainability and global seafood. Science
(New York, N.Y.), 327(5967):784–786.

Stenseth, N. C. and Rouyer, T. (2008). Ecology: destabilized fish stocks. Nature,
452(7189):825–826.

Tahvonen, O. (2009). Economics of harvesting age-structured fish populations. Journal of
Environmental Economics and Management, 58(3):281–299.

Tahvonen, O., Quaas, M. F., and Voss, R. (2016). What difference does it make? age structure,
gear selectivity, stochastic recruitment, and economic vs. msy objectives in the baltic cod
fishery. Fondazione Eni Enrico Mattei Working Papers (forthcoming).

Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J.
B. C., Lotze, H. K., Micheli, F., Palumbi, S. R., Sala, E., Selkoe, K. A., Stachowicz, J. J.,
and Watson, R. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science
(New York, N.Y.), 314(5800):787–790.

Zimmermann, F. and Heino, M. (2013). Is size-dependent pricing prevalent in fisheries?
the case of norwegian demersal and pelagic fisheries. ICES Journal of Marine Science,
70(7):1389–1395.

19


	Introduction
	Simple two age-class model
	Model with imperfect selectivity and fishing costs
	Conclusions
	Simple two age-class model: First-best 
	Model with imperfect selectivity and fishing costs: First-best
	Model with imperfect selectivity and fishing costs: Static fishermen optimization problem
	Empirical model for the Eastern Baltic Cod trawl fishery

