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Abstract
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which increases damages from climate change. On the other hand, extraction of
the fringe is postponed, which lowers climate damage if the fringe’s resource is
relatively dirty (e.g., tar sands). The recent shale oil revolution not only leads to
increased climate damages, but may even lower global welfare. We also show that
renewables subsidies do not cause a Weak Green Paradox if the relative stock of the
oligopolists is large enough, compared to the fringe.
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1 Introduction

Recent empirical evidence suggests that the influence of the Organization of Petroleum

Exporting Countries (OPEC) on the global oil market is waning. One reason for this is

that OPEC does not seem to act collusively anymore (Almoguera et al., 2011; Brémond

et al., 2012; Kisswani, 2016; Okullo and Reyns, 2016). Furthermore, the deployment

of new hydraulic fracturing technologies has enabled the supply of huge amounts of

shale oil and gas in the US (McJeon et al., 2014; Behar and Ritz, 2016). Production of

shale gas increased by more than a factor 6 during the period 2008-2014, whereas the

production of shale oil even increased more than eightfold over these years. According

to the latest estimates, this “shale revolution” has increased the technically recoverable

global reserves of natural gas and oil with 47 and 11 percent, respectively (EIA, 2014).

Moreover, US President Donald Trump recently ordered a revival of the Keystone XL

and Dakota Access pipelines, which will increase transportation capacity and lower the

transportation costs of tar sands oil from Alberta and North Dakota to refineries in

Illinois and Texas. The aim of this paper is to understand the consequences of these

recent development for the global energy market and for the effectiveness of climate

policies.

There is a vast literature on resource models with imperfect competition. Important

contributions were made by Stiglitz (1976) on monopoly, Lewis and Schmalensee

(1980) on oligopoly, Gilbert (1978) and Newbery (1981) on dominant firms. Our

model is close to the cartel-fringe model explored by, e.g., Benchekroun et al. (2009,

2010), Benchekroun and Withagen (2012) and Groot et al. (2003). See also Withagen

(2013) for a survey and the references therein. In the present paper we offer new

insights in three respects. First of all, we take account of OPEC still being an important

player on the market, but with less power than some decades ago. Almoguera et al.

(2011) conclude that “OPECs behaviour is best described as Cournot competition in

the face of a competitive fringe constituted by non-OPEC producers.” In line with

this conclusion, we model the market as a situation with a large number of price-

taking mining firms and a set of oligopolists, which reduces to the cartel-fringe model

if the number of oligopolists equals unity. Second, we take account of the existence

of renewables that are (perfect) substitutes for fossil fuel and that can be produced in

unlimited amounts, contrary to fossil fuel that is available in a finite amount. This opens
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the possibility of limit pricing (see, e.g., Van der Meijden et al. (2015); Andrade de Sá

and Daubanes (2016) and Van der Meijden and Withagen (2016) for recent work and

Hoel (1978), Salant (l979) and Gilbert and Goldman (1978) for early contributions).

Third, we investigate the effect of climate change policies on the extraction paths as

well as on welfare, allowing for damages from the accumulation of greenhouse gases.

We establish the existence of a Nash-Cournot equilibrium on the energy market. We

fully characterize the equilibrium and perform a sensitivity analysis for varying policy

measures and competitiveness indicators. The main findings are as follows.

First, the oligopolists and the fringe start out supplying simultaneously to the mar-

ket, despite their differing extraction costs. Second, if the relative initial stock of the

fringe is large, the phase with simultaneous supply will be followed by a phase during

which only the fringe is active (and the stocks of the oligopolists are depleted). In this

case, there will be no limit-pricing behaviour. However, if the initial stock of the cartel is

relatively large, the phase with simultaneous supply will be followed by a period during

which only the oligopolists are supplying. During this period, the oligopolists either

choose to price strictly below the price of renewables, in which case the price increases

over time, or to perform a limit-pricing strategy of just undercutting the renewables

price, in which case the price is constant over time. If marginal profits in a limit-pricing

regime are non-positive, oligopolists will start with limit pricing as soon as the fringe’s

stock is depleted. However, if marginal profits in a limit-pricing regime are positive,

the oligopolists will start limit pricing only after the fringe’s stock is depleted and their

own remaining stock is smaller than a certain threshold.

Third, the order of extraction of the different resources (e.g., conventional oil and

tar sands) and the occurrence and duration of a limit-pricing phase is crucially affected

by the number of oligopolists. An increase in this number increases the likelihood of the

oligopolists depleting before the fringe, therefore lowers the likelihood of a limit-pricing

phase occurring, and lowers its maximum duration. Fourth, the collapse of OPEC as a

cartel has ambiguous effects on climate damage. On the one hand, resource extraction

will become less conservative, which increases climate damage. On the other hand,

extraction of the relatively expensive and dirty resource owned by the fringe will be

back-loaded in time, which slows down climate change. Fifth, the shale oil revolution

characterized by an increase in shale oil reserves and a decrease in shale oil extraction
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costs, does not only increase climate damages (due to larger cumulative emissions),

but also lowers ‘grey welfare’ because the relatively expensive shale oil partially crowds

out early extraction of cheap oil by the oligopolists. Finally, a Weak Green Paradox, i.e.,

the increase of current carbon emissions upon the introduction of a renewables subsidy,

only occurs if the relative initial stock of the oligopolists is small.

Our work has several limitations. We employ the open-loop Nash equilibrium,

whereas possibly the feedback Nash equilibrium would be more appropriate. Moreover,

we establish the existence of an equilibrium, whereas there at this stage we cannot

exclude the existence of multiple equilibria (see also Benchekroun and Withagen,

2012). Moreover, we use constant marginal extraction cost of all fossil fuel suppliers

and constant marginal cost of the backstop, which is assumed a perfect substitute (see

also Van der Meijden and Withagen, 2016). Finally, we model demand for energy

and energy policy at the highest level of aggregation. We neglect the possibility of

strategic interaction between energy suppliers and energy demanders (see, e.g., Liski

and Tahvonen, 2004; Kagan et al., 2015).

The remainder of the paper is structured as follows. Section 2 outlines the model.

Section 3 characterizes the open-loop Nash equilibrium. In Section 4, we perform a

comparative statics analysis. Section 5 discusses welfare effects. Finally, Section 6

concludes.

2 The model

A non-renewable resource is jointly supplied a price-taking fringe and a group of n

suppliers with market power, referred to as oligopolists. The fringe is endowed with

an aggregate initial stock Sf0 and has a constant per unit extraction cost kf . The initial

stock of oligopolist i is denoted by Sc0i with i = 1, .., n. The per unit extraction cost

of oligopolist i is constant and denoted by kci . Extraction rates at time t ≥ 0 by the

fringe and oligopolist i are qf (t) and qci (t), respectively. The time argument will be

dropped when possible. Aggregate supply by the oligopolists reads qc ≡ ∑i q
c
i . Demand

for energy is described at the world level. The inverse demand of the non-renewable

resource is given by p + τ = α − β(qf + qc), with α > 0 and β > 0, where τ denotes a

constant specific tax on resource consumption and p is the price received by suppliers
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of the resource. A perfect substitute for the resource can be produced, indefinitely, at

marginal cost b > 0, by using a backstop technology. We abstract from technological

progress (cf. Fischer and Salant, 2014), as well as from set-up costs. Consumption of

the substitute is subsidized at a constant specific rate σ.1 Define b̂ ≡ b − σ − τ . We

denote the interest rate by r > 0.

The fringe maximizes its discounted profits,

∞∫
0

e−rt(p(t)− kf )qf (t)dt, (1)

taking the price path as given, subject to its resource constraint

Ṡf (t) = −qf (t), Sf (t) ≥ 0, Sf (0) = Sf0 . (2)

Each oligopolist i is aware of its influence on the equilibrium price and maximizes

∞∫
0

e−rt(α− β(qf (t) + qc(t))− kci )qci (t)dt, (3)

taking the time paths of qf and qcj (j 6= i) as given, subject to their resource constraint

Ṡci (t) = −qci (t), Sci (t) ≥ 0, Sci (0) = Sc0i. (4)

Moreover, the existence of the perfect substitute effectively implies an upper limit on

the price oligopolists can ask, yielding the additional constraint

α− β(qf (t) + qc(t))− τ ≤ b̂. (5)

We make the following two assumptions.

Assumption 1 (Symmetric oligopolists) For all i = 1, .., n we have:

(i) kci = kc.

(ii) Sc0i = Sc
0
n

where Sc0 represents the total stock owned by the oligopolists.

1The constancy of the tax can be motivated by constant marginal damages of emissions. Constancy
of the renewables subsidy is convenient for presenting the results.
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Assumption 2 (Relative costs) We impose:

(i) kc + τ < kf + τ < b− σ < α.

(ii) kf < (α− τ + nkc)/(1 + n).

Assumption 1 allows us to focus on the interaction of market power and the fringe

when facing a competing backstop technology. Asymmetry of oligopolists can deliver

interesting insights, but would obscure the source behind the novelty of the results of

the paper. Assumption 2 enables us to restrict our attention to cases that we think are

empirically relevant. Part (i) ensures that the tax-inclusive marginal production costs of

the non-renewable resource are lower than the after-subsidy marginal production costs

of the backstop technology, and that the after-tax and after-subsidy marginal production

costs are below the choke price. Part (ii) makes sure that the marginal extraction costs

of the fringe are below the profit-maximizing price of the oligopolists.2

3 Oligopoly-Fringe equilibrium

Our problem is a hybrid version of the cartel-fringe framework where the cartel an-

nounces a price path and the fringe chooses an extraction path, and the oligopoly

framework where each player chooses an extraction strategy.

Here we assume that each oligopolist chooses an extraction strategy, taking the

extraction strategies of all the other players, including the fringe, as given while the

fringe takes the price path as given and chooses its extraction strategy. For tractability

we focus on open-loop strategies, where the strategy of each oligopolist is an extraction

path.

Definition 1 A vector of functions q ≡ (qc1, ..., qln, qf ) with q(t) ≥ 0 for all t ≥ 0 is an

Open-Loop Oligopoly-Fringe Equilibrium (OL-OFE) if

(i) all extraction paths of the vector (qc1, ..., qcn, qf ) satisfy the corresponding resource

constraint,
2To see this, consider the extreme case with an infinitely large Sc0, implying a zero scarcity rent.

Instantaneous profits of the oligopolists (if qf = 0) are then given by α− τ − βqc(1 + 1/n)− kc. Hence,
the profit-maximizing price is p∗ = (α− τ) 1

1+n + kc n
1+n . Condition (ii) in Assumption 2 implies kf < p∗.
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(ii) for all i = 1, 2, ..., n

∫ ∞
0

e−rs
[
α− β

(
qc(s) + qf (s)

)
− τ − kc

]
qci (s)ds

≥
∫ ∞

0
e−rs

α− β
∑
j 6=i

qcjs+ q̂ci (s)− qf (s)
− τ − kc

 q̂ci (s)ds
for all q̂ci satisfying the resource constraint, and

(iii)

∫ ∞
0

e−rs [p (s)− kc] qf (s)ds ≥
∫ ∞

0
e−rs [p (s)− kc] q̂f (s)ds,

where p (s) = α− τ − β
(
qc(s) + qf (s)

)
, for all q̂f satisfying the resource constraint.

We use an optimal control approach to characterize an OL-OFE. The Hamiltonian

associated with the fringe’s problem reads

Hf = e−rt(p(t)− kf )qf + λf [−qf ]. (6)

The necessary conditions include

p(t) = α− τ − β(qf (t) + qc(t)) ≤ kf + λfert, (7a)

[kf + λfert − (α− τ) + β(qf (t) + qc(t))]qf (t) = 0, (7b)

λ̇f = 0. (7c)

Here, λf is the fringe’s shadow price of the resource stock. Hence, (7a)-(7c) say that in

an equilibrium with positive supply of the fringe, the producer price satisfies Hotelling’s

rule: the net price, p− kf , increases over time at the rate of interest.

The Lagrangian associated with oligopolist i’s problem is given by

Lci = e−rt(α− τ − β(qf + qc)− kc)qci + λci [−qci ] + µci [b− σ − α + β(qf + qc)]. (8)

Due to Assumption 1 we focus on the conditions that characterize an equilibrium where

the extraction paths of the oligopolists are identical, qci = qc/n, λci = λc and T ci = T c for

all i = 1, .., n, where T ci denotes the date at which the resource is depleted by oligopolist

6



i. The necessary conditions then include

α− τ − β(qf (t) +
(

1 + 1
n

)
qc(t)) ≤ kc + λcert − µcβert, (9a)

[kc + λcert − βµcert − α + τ + β(qf (t) +
(

1 + 1
n

)
qc(t))]qc(t) = 0, (9b)

µc(t)[b− σ − α + β(qf (t) + qc(t)]; µc(t) ≥ 0, (9c)

λ̇c = 0, (9d)

where λc denotes the shadow price of the resource stock of the oligopolists. Hence,

conditions (9a)-(9d) imply that as long as p < b̂ (i.e., as long as restriction (5) is non-

binding), marginal profit of the oligopolists increases over time at the rate of interest.

Because the oligopolists are free to choose the moment of depletion of their stocks, in

equilibrium the Hamiltonian vanishes at date T c, implying

(
p(T c)− kc − τ − λcerT c

) qc(T c)
n

= 0. (10)

In the OL-OFE, different phases of resource extraction exist. By F , C, S and L we

denote phases with only the fringe supplying, only the oligopolists supplying, at a price

strictly below b, simultaneous supply, and supply by the oligopolists at the backstop

price (limit pricing), respectively.

3.1 Preliminary results

The next section provides a preliminary analysis where we first summarize the neces-

sary conditions that hold in each phase (Lemma 1) and then proceed by elimination

of specific sequences of phases (Lemma 2). From these two important Lemmata we

proceed to characterize an OL-OFE in Section 3.2.

Lemma 1 Along F we have

p(t) = α− τ − βqf (t) = kf + λfert, (11a)

p(t) = α− τ − βqf (t) ≤ kc + λcert, (11b)

qf (t) = 1
β

(α− τ − kf − λfert). (11c)
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Along S we have

p(t) = α− τ − β(qf (t) + qc(t)) = kf + λfert, (12a)

p(t) = α− τ − β(qf (t) +
(

1 + 1
n

)
qc(t)) = kc + λcert, (12b)

qf (t) = 1
β

(
α− τ − (n+ 1)(kf + λfert) + n(kc + λcert)

)
, (12c)

qc(t) = n

β

(
kf + λfert − kc − λcert

)
. (12d)

Along C we have

p(t) = α− τ − βqc(t)) ≤ kf + λfert, (13a)

p(t) = α− τ −
(

1 + 1
n

)
βqc(t)) = kc + λcert, (13b)

qc(t) = 1
β

n

n+ 1(α− τ − kc − λcert). (13c)

Along L we have

p(t) = b̂, (14a)

qc(t) = qL ≡
α− τ − b̂

β
, (14b)

kc + λcert ≥ α− τ −
(

1 + 1
n

)
βqL =

(
1 + 1

n

)
b̂− α− τ

n
. (14c)

Proof. Straightforward from the application of the Maximum Principle to the problem

of each oligopolist and the fringe and using symmetry. Rewriting conditions (7a), (7b),

(9a), (9b), (9c) and (10) in each phase yields the results. Expression (14c) is obtained

from (9a) with µ > 0 imposed. �

During the limit-pricing phase, the price is constant and equal to b̂ and therefore (11a)

and (12a) cannot hold: the fringe’s production is nil. Condition (14c) is illustrated in

Figure 1. The marginal revenue jumps at q = qL, and when b̂ ≥ kc+λcert ≥ (1+ 1
n
)b̂−α−τ

n

marginal revenue is not smaller (not larger) than the full marginal cost for q < (>)qL
implying that the profit maximizing quantity is qL. When b̂ = kc + λcert, marginal

revenue equals full marginal cost for any q ∈ [0, qL] however the symmetric oligopolistic

outcome yields qL because of discounting.
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Figure 1: Discontinuous marginal revenue and limit pricing
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We denote the oligopolists’ marginal profit during limit pricing by3

π̂ ≡
(

1 + 1
n

)
b̂− α− τ

n
− kc. (15)

If π̂ ≤ 0, condition (14c) always holds. Therefore, as soon as the stock of the fringe is

exhausted the equilibrium will be limit pricing. Intuitively, if marginal profits remain

non-positive for all p ≤ b̂, once the fringe’s stock is depleted the oligopolists will set the

highest possible price (of course, given that they still have a positive remaining stock).

If π̂ > 0, we get from (9b) and (10) that the duration of the limit-pricing phase can be

at most

T̂LM ≡
1
r

ln
 b̂− kc

π̂

 , (16)

where the term in between brackets equals average profits over marginal profits during

limit pricing. We denote a limit-pricing phase of duration T̂LM by L̂. A limit-pricing

3Define marginal profits of oligopolist i as π(qci ; qc, qf ) ≡ α − β(qc + qf ) − kc − τ − βqci . Evaluate at
qf = 0 and qci = qc = qL = α−τ−b̂

β to get π̂ = π(qL, qL, 0) =
(
1 + 1

n

)
b̂− α−τ

n − kc.
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phase with a duration different from T̂LM is denoted by L̃.

We proceed by investigating which sequences of phases are possible in equilibrium.

Lemma 2 lists all sequences of phases that can be ruled out because they violate the

necessary conditions.

Lemma 2 In a OL-OFE

(i) A direct transition from C to F or vice versa is excluded.

(ii) It is not optimal to have F → L̂ nor F → L̃.

(iii) It is not optimal to have F before S.

(iv) The initial regime is not C.

Proof. See Appendix A.2. �

PROVIDE INTUITION

3.2 Characterization of an OL-OFE

The strategy to characterize an OL-OFE is to consider for a given stock Sf0 which phases

occur in equilibrium depending on the stock Sc0. To this end it will be helpful to identify

two threshold stocks Sc0S and Ŝc0. We first identify the conditions to obtain an OL-OFE

that consists of only S.

Lemma 3 Suppose the OL-OFE consists of only S, with final time T . Then

rβSf0 = (b̂+ nkc − (n+ 1)kf )(rT − 1 + e−rT ) + (α− τ − b̂)rT, (17a)

rβSc0 = n(kf − kc)(rT − 1 + e−rT ). (17b)

Proof. See Appendix A.2. �

This system defines a one to one relationship between Sf0 and Sc0 that yield an equilib-

rium S. Given Sf0 this system defines a unique Sc0S = Φ
(
Sf0
)

such that the equilibrium

is S when the initial stocks are
(
Sf0 , S

c
0S

)
. The function Φ is strictly increasing. So for

each Sc0 we have an equilibrium that reads S when Sf0S = Φ−1 (Sc0). Hence, we have

established the following result.
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Lemma 4 For each Sf0 there exists a unique Sc0S such that the equilibrium reads S.

The unique duration of this S-phase is denoted by TS.

3.2.1 When fringe depletes last

We investigate the equilibrium outcome when we have Sc0 < Sc0S. We establish that the

sequence of regimes reads S → F .

Lemma 5 Given Sf0 , the equilibrium reads S → F when Sc0 < Sc0S. When Sc0 → Sc0S the

duration of the F -phase tends to zero.

Proof. See Appendix A.2. �

3.2.2 When fringe depletes first

Here we examine the possible outcomes when, given Sf0 , we have Sc0 > Sc0S. We

establish that there will then be a final limit-pricing phase. We start by considering

the special case of the equilibrium S → L̂. The duration of the S-phase is denoted by

T̂S and the duration limit pricing is T̂LM (see (16)). We show in the next lemma that for

any given initial stock of the fringe, the existence of this equilibrium requires a unique

initial stock of the oligopolists. Moreover, the length of the S-phase is larger than in

the equilibrium where there is only an S-phase (Lemma 4). We will distinguish cases

with positive (Lemma 6-8) and negative (Lemma 9) marginal profits of the oligopolists

during limit-pricing.

Lemma 6 Suppose marginal profits during limit pricing are positive, i.e., π̂ > 0. Then:

(i) For each Sf0 , there exists a unique Ŝc0 such that the equilibrium reads S → L̂.

(ii) T̂S > TS and Ŝc0 > Sc0S + SLM .

Proof. See Appendix A.2. �
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Note that the duration of the limit-pricing phase depends on the marginal profit of the

oligopolists at the end of the S-phase. This can be seen by combining (9b) and (10),

yielding

er∆ = b̂− kc

b̂− β qc(T−)
n
− kc

, (18)

where ∆ denotes the duration of limit pricing and T− ≡ limt↑T t denotes the end of the

S-phase. It follows from Lemma 6 that if Sc0 equals the threshold Ŝc0, we have ∆ = T̂LM .

Substitution into (16) then makes clear that the oligopolists serve the entire market at

the end of the S-phase, i.e., qc(T−) = qL and qf (T−) = 0.

The next lemma shows what the equilibrium is if the initial stock of the oligopolists

exceeds the threshold Ŝc0.

Lemma 7 Suppose marginal profits during limit pricing are positive, i.e., π̂ > 0. Given

Sf0 then for any Sc0 ≥ Ŝc0 the equilibrium reads S → C → L̂.

Proof. See Appendix A.2. �

Intuitively, compared to the equilibrium in Lemma 6, the duration of the limit-pricing

phase cannot increase, as is clear from (18), because the oligopolists are already serving

the entire market at the end of the S-phase. As a result, the increase in the initial stock

of the oligopolists gives rise to the occurrence of an intermediate C-phase before limit-

pricing starts.

Lemma 8 characterizes the equilibrium in case the initial stock of the oligopolists

falls short of the threshold Ŝc0, but still exceeds Sc0S.

Lemma 8 Suppose marginal profits during limit pricing are positive, i.e., π̂ > 0. Given

Sf0 then for any Sc0 ∈
(
Sc0S, Ŝ

c
0

)
the equilibrium reads S → L̃.

Proof. See Appendix A.2. �

In this case, the oligopolists still have a positive remaining stock at the end of the S-

phase, but the remaining stock size is insufficient to have a final limit-pricing phase L̂

of duration T̂LM . As a result, there will be limit pricing for a shorter period of time.
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Therefore, the market share of the oligopolists at the end of the S-phase, qf/qL, in this

equilibrium will be smaller than that in the equilibria described in the previous two

lemmata. Moreover, this market share will converge to zero if Sc0 converges to Sc0S (and

therefore ∆ converges to zero), as can be noticed from (18).

We now consider the case in which marginal profits of the oligopolists are non-

positive as long as the fringe does not supply.

Lemma 9 Suppose marginal profits during limit pricing are non-positive, i.e., π̂ ≤ 0.

Then for any Sc0 ≥ Sc0S the equilibrium reads S → L̃.

Proof. See Appendix A.2. �

Intuitively, if the oligopolists have an initial stock large enough to end up with a

positive remaining stock at the moment when the fringe’s stock is depleted, non-positive

marginal profits imply that they will maximize profits by choosing for a limit-pricing

strategy from that moment onwards until depletion, irrespective of the size of their

remaining resource stock.

3.2.3 The OL-OFE

We are now ready to give a full characterization of the OL-OFE. The results from Lemma

1-7 can be collected into Proposition 1.

Proposition 1 (Characterization of the equilibrium)

(i) Suppose marginal profits during limit pricing are non-positive, i.e., π̂ ≤ 0. Then for

any given Sf0 ≥ 0, there exists a unique Sc0S such that:

(a) If Sc0 < Sc0S the equilibrium reads S → F .

(b) If Sc0 = Sc0S the equilibrium reads S.

(c) If Sc0 > Sc0S the equilibrium reads S → L̃.

(ii) Suppose marginal profits during limit pricing are positive, i.e., π̂ > 0. Then for any

given Sf0 ≥ 0, there exists a unique Sc0S and a unique Ŝc0, such that:

(a) If Sc0 < Sc0S the equilibrium reads S → F .
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(b) If Sc0 = Sc0S the equilibrium reads S.

(c) If Sc0 ∈ (Sc0S, Ŝc0) the equilibrium reads S → L̃.

(d) If Sc0 = Ŝc0 the equilibrium reads S → L̂.

(e) If Sc0 > Ŝc0 then the equilibrium reads S → C → L̂.

Figure 2 illustrates the equilibrium sequence for different combinations of the initial

resource stock of the oligopolists (horizontal axis) and the fringe (vertical axis). Panel

(a) shows the case with positive marginal profits during limit pricing (part (i) of the

proposition), whereas panel (b) shows the case with non-positive marginal profits

during limit pricing (part (ii) of the proposition).

The OL-OFE of our model clearly shows what happens if a resource cartel gets

confronted with the existence of a fringe and with a smaller degree of coordination

between its members. Starting from the horizontal axis in panel (a) (where the S-

phase is degenerate, as Sf0 = 0), the equilibrium reads C → L̂.

The entrance of a fringe implies that the equilibrium changes to S → C → L̂.

Moreover, the larger the initial stock of the fringe (move upwards in the figure) the

smaller the duration of the intermediate C-phase becomes, until it entirely disappears

when the S → L̂ locus is reached. Further increasing the initial stock of the fringe

implies that the duration of the limit-pricing phase will go down as well, until it

vanishes completely when the S-locus is reached. If the fringe’s initial stock becomes

even larger, the stock of the resource cartel is exhausted before that of the fringe.

The effect of an increase in n, i.e., of moving from a cartel to an oligopoly, will be

discussed in the next section. However, it is clear from (16) already that the duration

of the L̂-phase will go down if n increases (while keeping Sc0 fixed).

Now moving to the horizontal axis in panel (b) (where again the S-phase is degen-

erate), the equilibrium reads L̃, meaning that there is limit-pricing throughout. The

entrance of a fringe changes the equilibrium to S → L̂. Furthermore, the duration of

S-phase increases at the cost of the duration of the L̃-phase as the initial resource stock

of the fringe goes up. Limit-pricing disappears once the S-locus is reached. Moreover,

the fringe will again survive the cartel once the locus is crossed.
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Figure 2: Characterization of the equilibrium
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3.3 Limit pricing throughout?

Recently, Andrade de Sá and Daubanes (2016) have shown that under monopolistic oil

supply, limit pricing will occur from the beginning if the price elasticity of oil demand

is smaller than unity, which has often found to be the case empirically (cf. Hamilton,

2009c,a). Intuitively, as long as the price elasticity of resource demand is below unity,

the monopolist maximizes its profits by setting the oil price as high as possible at each

moment in time, i.e., just below the price of renewable energy. However, if the oil

market is not characterized by monopolistic supply, but by an oligopoly-fringe structure

instead, this ‘limit pricing throughout’ result may break down for two reasons.

First, as long as the fringe starts out with a positive stock, there will be an initial

regime of simultaneous use during which the oil price is lower than the renewables

price (see Proposition 1). The oligopolists cannot perform a limit-pricing strategy from

the beginning, because the fringe would drive down the price by increasing supply.

Second, by defining the price elasticity of demand as ε(q) ≡ −dq(p+τ)
dp
· (p + τ)/q we

can rewrite condition (14c) as

ε(qL) ≤ 1
n

+ kc + λcert + τ

βqL
. (19)

As long as this condition is satisfied, marginal profits of the oligopolists during limit

pricing are non-positive, implying that they will choose a limit-pricing strategy as soon

as the fringe’s stock is exhausted (indeed, from the beginning if Sf0 = 0). For n = 1

(the monopoly case considered in Andrade de Sá and Daubanes (2016)), the right-

hand side of (19) exceeds unity. Hence, under monopolistic oil supply this condition

is always satisfied if ε(qL) < 1. In that case, there will be limit pricing throughout if

Sf0 = 0. However, if n > 1, the inequality ε(qL) < 1 is no longer a sufficient condition

for (19) to hold. Hence, even with inelastic oil demand and without the existence of a

fringe, limit pricing does not necessarily occur from the beginning. The reason is that

an oligopolist’s individual price elasticity of demand during limit pricing, εi(qL), exceeds

the aggregate price elasticity of demand.4 If the individual price elasticity of demand

exceeds unity, limit pricing throughout is no longer necessarily the profit maximizing

4From the demand function in a limit pricing phase with q = qL, we get ε(qL) = α−βqL

βqL
and εi(qL) =

α−βqL

βqL/n
= nε(qL). Hence n > 1 implies εi(qL) > ε(qL).
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strategy.

Hence, both recent developments on the oil market, the shale oil revolution in

the US and the partial collapse of the OPEC cartel, make a strategy of limit pricing

throughout less likely.

4 Comparative statics

In an oligopoly-fringe market, the effects of climate change policies differ markedly

from those under the extreme circumstances of perfect competition and pure monopoly.

In this section, we investigate these effects. Furthermore, we discuss the consequences

of the (partial) collapse of OPEC for the resource extraction paths and the effectiveness

of climate policies, by increasing the number of oligopolists above unity.

Proposition 2 discusses the effect of a renewables subsidy on initial oil extraction.

Proposition 2 (Renewables subsidy and initial extraction)

(i) If the equilibrium reads S → F , a marginal increase in the renewables subsidy

increases initial extraction.

(ii) If the equilibrium reads S → L̃, then

(a) if marginal profits during limit pricing are positive (i.e., if π̂ > 0), and n = 1,

then for initial stocks close to the S locus (S → L̂ locus) a marginal increase in

the renewables subsidy increases (decreases) initial extraction.

(b) if marginal profits during limit pricing are non-positive (i.e., if π̂ ≤ 0), a

marginal increase in the renewables subsidy increases initial extraction.

(iii) If the equilibrium reads S → C → L̂ and n = 1, a marginal increase in the

renewables subsidy decreases initial extraction.

To understand the results in Proposition 2, it is helpful to consider the extreme cases

of perfect competition and pure monopoly on the resource market. Under perfect

competition, a subsidy for renewables increases initial extraction. This is the standard

Green Paradox effect discussed by Sinn (2008, 2012). The reason is that by making

renewables cheaper, the subsidy lowers the future market price of oil. As a result,
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resource owners respond by depleting their stock more rapidly, which increases initial

extraction. With monopolistic resource supply, on the contrary, the resource owner

responds to a renewables subsidy by increasing the initial price and thereby lowering

extraction (as long as he does not choose for limit pricing from the beginning). So

doing, the monopolist effectively postpones entry of renewables producers (cf. Gilbert

and Goldman, 1978; Hoel, 1983; Van der Meijden and Withagen, 2016).

As long as the initial aggregate stock of the oligopolists is small relative to that

of the fringe, the equilibrium reads S → F (Proposition 1, parts (ia) and (iia)). In

this case, the perfectly competitive mechanism dominates, implying that initial supply

goes up in response to an increase in the renewables subsidy (part (i) of Proposition

2). However, if the initial aggregate stock of the oligopolists is relatively large and

if marginal profits during limit pricing are positive, the equilibrium sequence reads

S → C → L̂ (Proposition 1, part (iie)). In that case, for n = 1 the monopolistic

mechanism dominates and initial extraction decreases upon a rise in the renewables

subsidy (part (iii) of Proposition 2). For n > 1, imperfect competition may be too small

to generate a decrease in initial extraction.

Finally, for the intermediate case in which the equilibrium reads S → L̃ (see part

(ic) and (iid) of Proposition 1), we distinguish two cases. First, if marginal profits

during limit pricing are positive (part (iia) of Proposition 2) the effect of a renewables

subsidy on initial extraction is ambiguous. The competitive mechanism dominates (so

that initial extraction goes up) close to the S locus, whereas if n = 1 the monopolistic

mechanism is dominant (so that initial extraction goes down) close to the S → L̂ locus.

Second, if marginal profits during limit pricing are negative (part (iib) of Proposition

2), a renewables subsidy increases initial extraction, just like in the case under perfect

competition and under pure monopoly with negative marginal profits during limit

pricing, which would be characterized by limit pricing from the beginning (Van der

Meijden and Withagen, 2016).

Proposition 3 considers the effects of climate policy on the duration of limit pricing

and the time of depletion.

Proposition 3 (Policy and extraction duration)

(i) If the equilibrium reads S → C → L̂, a marginal increase in the renewables subsidy

and/or the carbon tax decrease the duration of the L̂-phase.
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(ii) A marginal increase in the renewables subsidy (carbon tax) decreases (postpones)

the time of depletion.

The result in part (i) can be understood by noting from (16) that the duration of

the limit-pricing phase depends on the proportional difference between average profits

and marginal profits at the after-tax-and-subsidy renewables price b̂. Both a renew-

ables subsidy and a carbon tax lower this proportional difference and thus shorten the

duration of the limit-pricing phase.

Part (ii) says that irrespective of the relative initial stocks of the oligopolists and

the fringe, an increase in the renewables subsidy brings forward, whereas a carbon

tax postpones the time of depletion. In the perfectly competitive case, the renewables

subsidy shifts down (up) the entire resource price (extraction) path, which implies that

depletion occurs sooner. Under pure monopoly, although initial extraction goes down,

supply during the limit pricing phase goes up. On balance, the depletion time goes

down. To understand the increase in the time of depletion upon an increase of the

carbon tax, note that the carbon tax effectively increases marginal extraction costs,

implying more conservative extraction.

Climate policies also affect the borders of the equilibrium sequence regions shown

in Figure 2, as described in the following proposition.

Proposition 4 (Policy, number of oligopolists, and equilibrium loci)

(i) Upon an increase in the renewables subsidy (carbon tax), the S locus shift to the left

(right);

(ii) Upon an increase in the renewables subsidy and/or the carbon tax, the S → L̂ locus

shifts to the right.5

(iii) Upon an increase in n, both the S locus and the S → L̂ shift to the right.

Proof. See Appendix A.2. �

Intuitively, the renewables subsidy increases initial extraction of the fringe. Hence, a

larger minimum initial resource stock of the fringe is needed to get S → F . The carbon

5Note that the S → L̂ locus does not exist if π̂ ≤ 0.
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tax, however, mainly lowers extraction of the fringe during the simultaneous phase.

This can be noticed from (12c) and (12d), which show that the carbon tax has a direct

negative effect on qf , and not on qc. Therefore, a lower minimum initial resource stock

of the fringe is needed to get S → F . This explains part (i) of the proposition. Part (ii)

follows by noting that an increase in the renewables subsidy increases the extraction

rate during the L̂ phase. This effect dominates the increase in the duration of the L̂

phase and the increase of the fringe’s initial extraction. Hence, a larger Sc0 is required

to obtain the equilibrium outcome S → C → L̂. The carbon tax, however, leaves the

extraction rate during the L̂ phase unaffected, but mainly decreases extraction of the

fringe during the simultaneous phase. Hence, an increase in the carbon tax also pushes

up the Sc0 that is required to obtain the equilibrium outcome S → C → L̂. The intuition

for part (iii) is simple: extraction per oligopolist during the S-phase increases if the

number of oligopolists goes up. As a result, the threshold values for Sf0 to obtain S → L̃

and S → C → L̂ go up, implying that both loci shift to the right.

Figure 3: Effects on equilibrium sequences

Panel (a) - Renewables subsidy Panel (b) - Carbon tax
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Notes: The black lines correspond to the case of σ = τ = 0. In panel (a), the grey lines correspond to σ = 10 (and τ = 0). In
panel (b), the grey lines correspond to τ = 10 (and σ = 0). We have chosen the following parameter values: α = 210, β = 75/17,
b = 157.5, kc = 30, kf = 60, n = 2, r = 0.1, and τ = 0.

4.1 Calibration

We calibrate our model by using data on proven crude oil reserves, global crude oil

consumption, extraction costs, the oil price, and the price elasticity of oil demand.

Proven reserves owned by OPEC and the rest of the world amount to 1220 and 433
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billion barrels, respectively (EIA, 2017). We choose α = 210 and β = 150
34 to get initial

oil demand equal to the 33.6 billion barrels of average yearly global oil consumption

in 2012-2014 (EIA, 2017), an initial price elasticity of oil demand equal to 0.4, which

is within the range of long-run price elasticities reported by Hamilton (2009b), if the

initial oil price would be 61.5 US dollars per barrel, close to the current oil price of

about 55 US dollars per barrel. We use the break even estimates of around 30 and 60

US dollars per barrel as values for the marginal extraction costs of the OPEC oligopolists

and the shale fringe, respectively (Rystad Energy, 2014).6 Following Brémond et al.

(2012), we devide OPEC within two subgroups that act cohesively by imposing n = 2.

Finally, we have picked b = 157.5 to indeed get an initial equilibrium price equal to

61.5 US dollars per barrel. An overview of our benchmark calibration and the implied

equilibrium values is provided in Table 1.7

Table 1: Benchmark calibration

parameters description value unit

α choke price 210 US$/bbl
β slope inverse demand function 150/34 US$/bbl
b renewables price 157.5 US$/BOE
kc marginal extraction cost oligopolists 30 US$/bbl
kf marginal extraction cost fringe 60 US$/bbl
n number of oligopolists 2 number
Sc0 initial (aggregate) stock oligopolists 1220 billion bbl
Sf0 initial stock fringe 433 billion bbl

implied values description value unit

qc(0) + qf (0) initial oil consumption 33.6 billion bbl
qc(0)/(qc(0) + qf (0)) initial OPEC market share 0.4 billion bbl
p(0) initial oil price 61.5 US$/bbl
ε(qc(0) + qf (0)) initial price elasticity of demand 0.4 elasticity

4.2 Numerical illustration

In this section, we simulate the model to quantify the effects of changes in policy and

market power in our benchmark calibration.

6Rystad Energy (2014) defines the break even price as the “Brent oil price at which NPV equals zero,
and considers all future cash flows using a real discount rate of 7.5 percent”.

7We use tC to denote ‘metric tonnes of carbon’, bbl for ‘barrels of oil’ (one barrel contains about 159
litres) and BOE for ‘barrels of oil equivalent’.
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Figure 3 illustrates the results of Proposition 4 by showing the shifts in the two loci

upon an increase of the renewables subsidy (panel (a)) and the carbon tax (panel (b)),

both from 0 to 10 (US$/bbl). The black lines correspond to the benchmark equilibrium

with σ = τ = 0. Recall from Figure 2 that in the area below the dashed line, the

equilibrium sequence reads S → C → L̂, in between the solid and the dashed line, we

have S → L̃ and above the dashed line S → F .

Figure 4: Effect of cartel cohesion on price and extraction paths

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The black lines correspond to the benchmark case with n = 2. The grey lines correspond to the case with n = 5. In panel
(b), the solid line represents extraction of the oligopolists and the dashed line represents extraction of the fringe. We have chosen
the following parameter values: α = 210, β = 175/17, b = 157.5, kc = 30, kf = 60, r = 0.1, σ = 0, τ = 0, Sc

0 = 1220, and
Sf

0 = 433.

Figure 4 examines the effect of the number of oligopolists (keeping the aggregate

initial stock Sc0 constant) on the price path (panel (a)) and the extraction paths (panel

(b)). The solid lines correspond to the benchmark case with n = 2, and the dashed

lines represent the equilibrium with n = 5. Increasing the number of oligopolists,

i.e., increasing competition, yields the intuitive result that the initial price drops and

depletion occurs sooner (panel (a)). Furthermore, it is clear from the two price paths

that in this particular example the equilibrium sequence changes from S → C → L̂ to

S → F (as the limit-pricing phase disappears), in line with our discussion of Figure 3.

Panel (b) shows the accompanying extraction paths, where the black lines correspond

to the extraction paths of the oligopolists and the grey lines to the extraction paths

of the fringe. Increasing the number of oligopolists markedly boosts their aggregate

extraction initially, whereas the fringe responds by postponing its extraction.

The solid line in panel (a) of Figure 5 shows that in the cartel-fringe case (with
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Figure 5: Relative stock and the Green Paradox - renewables subsidy

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The figure shows the effect of an increase in σ from 0 to 10 on the initial price (panel (a)) and the initial extraction rates
(panel (b)). The black lines correspond to the case with n = 1 and the grey lines to the case with n = 2. In panel (b), the
solid lines represent extraction of the oligopolist(s) and the dashed lines represent extraction of the fringe. We have chosen the
following parameter values: α = 210, β = 75/17, b = 157.5, kc = 30, kf = 60, r = 0.1, τ = 0, Sf

0 = 433.

n = 1), increasing the renewables subsidy from σ = 0 to σ = 10 causes a Weak Green

Paradox, i.e., an increase in current extraction, only if the initial resource stock of the

cartel is small compared to that of the fringe. If the stock of the cartel is above a certain

threshold, the initial resource price rises and aggregate initial extraction goes down

upon the introduction of a renewables subsidy (see parts (iia) and (iii) of Proposition

2). This effect does no longer occur if the cartel breaks down: the dashed line in panel

(a) represents our benchmark case with n = 2, in which the initial price decreases over

the entire range of the oligopolist’s initial resource stock. Panel (b) contains the effect

on the extraction paths. The solid (dashed) line represents extraction of the oligopolists

(fringe). The black (grey) lines correspond to the case with n = 1 (n = 2). Although

for n = 2 the extraction rate of the oligopolists still goes down upon the introduction of

a renewables subsidy, this decrease is dominated by the boost in the fringe’s extraction.

5 Welfare analysis

This section examines the effects of climate policies and market structure on climate

damages and social welfare. We define ‘grey’ welfare, WG, as the discounted sum of
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consumer surplus, producer surplus and tax revenue, minus subsidy costs:8

WG ≡
∫ T̄

0
e−rt

{1
2[α− (p+ τ)](qc + qf ) + (p− kc)qc + (p− kf )qf + τ(qc + qf )

}
dt

+ e−rT̄

r

{1
2[α− (b− σ)]qL − σqL

}
,

where T̄ denotes the moment at which the last resource stock is depleted. Rearranging

this expression by using the resource demand function yields

WG ≡
∫ T̄

0
e−rt

[
(α− kc)qc + (α− kf )qf − 1

2β(qc + qf )2
]
dt

+ e−rT̄

r

[
α− b
β

(α− τ − b̂)− 1
2

1
β

(α− τ − b̂)2
]
.

Furthermore, we impose a climate damage function Z = ψEφ, with ψ > 0 and φ ≥ 1,

where E denotes the atmospheric stock of carbon, which evolves according to

Ė(t) = ωcqc(t) + ωfqf (t),

where ωc and ωf denote the emission factors of the oligopolists and the fringe, respec-

tively. The discounted value of climate damage is given by:

D =
∫ ∞

0
e−rtψ[E(t)]φdt.

Social welfare, W , is defined as the difference between grey welfare and climate dam-

age: W ≡ WG −D.

In our benchmark calibration, we impose φ = 1 and φ = 20. This implies a constant

social cost of carbon (SCC) equal to ψ
r

= 200 US$ per metric ton carbon, in line with the

estimates reported by Pindyck (2016) based on expert opinions. The carbon content

of conventional crude oil, ωc, equals 0.1108 tC/bbl (EPA, 2017). We assume that

the emission factor of the fringe is 25 percent larger than the emission factor of the

oligopolists (i.e., ωf = 0.1385), in order to take into account that producing oil from,

8Alternatively, we could define a the quasi-linear utility function U(qc + qf + x) = α(qc + qf + x) −
1
2β(qc + qf + x)2 + M (which gives rise to our linear demand function), where x denotes renewables
consumption and M expenditure on a numeraire good. This results in the same expression for WG.
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e.g., tar sands, is more polluting than extracting conventional oil (cf. Brandt, 2008).

Figure 6: Welfare effects of climate policies

Panel (a) - Climate damage vs. subsidy Panel (b) - Social welfare vs. subsidy

0 10 20 30 40 50 60 70 80 90

σ

7600

7800

8000

8200

8400

8600

8800

D

n=2

n=1

FB

PC

0 10 20 30 40 50 60 70 80 90

σ

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

W

×10
4

W
F
, n=2

W
F
, n=1

n=2

n=1

FB

PC

Panel (c) - Climate damage vs. carbon tax Panel (d) - Social welfare vs. carbon tax

0 10 20 30 40 50 60

τ

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

D

n=2

n=1

PC

FB

0 10 20 30 40 50 60 70 80 90

τ

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

W

×10
4

PC

n=1

n=2

FB

W
F
, n=2

W
F
, n=1

Notes: The figure shows climate damage (panels (a) and (c)) and social welfare (panels (b) and (d)) for various values of the
renewables subsidy (panels (a) and (b)) and the carbon tax (panels (c) and (d)). The solid black (grey) lines correspond to the
oligopoly-fringe equilibrium with n = 1 (n = 3). The dashed lines indicate the perfectly competitive equilibrium (indicated
with PC). The dotted lines correspond to the first-best outcome (indicated with FB). The dashed-dotted lines in panels (b) and
(d) correspond to social welfare excluding the oligopolists’ profits. We have chosen the following parameter values: α = 210,
β = 75/17, b = 157.5, kc = 30, kf = 60, r = 0.1, Sc

0 = 1220, Sf
0 = 433, SCC = 200, ωf = 1, ωc = 1.25.

Figure 6 shows the effects of a renewables subsidy (upper two panels) and a carbon

tax (lower two panels) on climate damage (left panels) and social welfare (right pan-

els). The dashed (dotted) lines in the figure shows the first-best and the equilibrium

under perfect competition, respectively, as reference points.9 In each panel, the black

line corresponds to the cartel-fringe case (n = 1) and the grey line to the benchmark

oligopoly-fringe case with n = 2. The dashed-dotted lines in panels (b) and (d) depict

9The first-best and the equilibrium under perfect competition are derived in Appendix A.3.
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the social welfare excluding profits of the oligopolists.10

Panel (a) shows that climate damage is much lower in the cartel-fringe and oligopoly

cases than under perfect competition, because of relatively conservative extraction.

Still, climate damage is larger than in the first-best. Nevertheless, as indicated in panel

(b), social welfare for the imperfectly competitive cases is lower than under perfect

competition. There are two reasons for this. First, in terms of grey welfare, extraction

is too conservative in the cartel-fringe and oligopoly-fringe equilibria (conservation

effect). Second, in these cases the Herfindahl rule is violated, meaning that extrac-

tion of the relatively expensive resource starts before the cheap resource is exhausted

(sequence effect). An increase in the subsidy increases climate change in all three

equilibria, as show in panel (a). Furthermore, panel (b) shows that under perfect

competition the subsidy reduces social welfare by speeding up extraction. With imper-

fect competition however, extraction is too conservative in the benchmark equilibrium,

implying that the welfare effect of the subsidy is smaller. For n = 1, social welfare

even increases in the renewable subsidy over a certain range of subsidy rates. Social

welfare excluding the oligopolists’ profits increases in the subsidy, as the subsidy causes

a reallocation from the oligopolists to the consumers of oil.

Panels (c) and (d) show the effects of the carbon tax. A constant carbon tax

slows down resource extraction. If the tax rate is large enough, climate damage in all

three equilibria will be lower than in the first-best. Panel (d) shows that the perfectly

competitive equilibrium almost coincides with the first-best if the carbon tax equals the

social cost of carbon.11 The second-best tax rate is lower in the imperfectly competitive

cases (i.e., the top of the solid grey and black lines in panel (d) is located to the left

of the top of the dashed line), because of relatively conservative extraction by the

cartel and the oligopolists. On the contrary, the second-best tax rate in case profits

of the oligopolists are excluded is higher, because the tax causes a reallocation from the

oligopolists to the consumers.

In Figure 7, we show the effect of cartel cohesion (in terms of the number of

oligopolists) on climate damage and social welfare. Panel (a) shows that the effect

10Social welfare excluding profits of the oligopolists is defined as WF ≡W −
∫∞

0 e−rt(p(t)−kc)qc(t)dt.
11Because extraction by the oligopolists and by the fringe are taxed at the same rate (so, strictly

speaking, τ denotes a resource tax instead of a carbon tax), the perfectly competitive equilibrium only
coincides with the first-best if emission factors of the cartel/oligopolists and the fringe are the same and
the tax rate equals the SCC multiplied by the common emission factor.
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Figure 7: Welfare effect of cartel cohesion
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on climate damage is non-monotonic in the number of oligopolists. This result is due

to the difference in emission factors between the oligopolists and the fringe. On the one

hand, increasing the number of oligopolists makes resource extraction less conservative

and therefore accelerates climate change. On the other hand, increasing the number

of oligopolists reduces front-loading of the relatively expensive resource. Accordingly,

if this relatively expensive resource (shale oil) is also relatively more polluting than

the relatively cheap resource (conventional OPEC oil), increasing competition may be

beneficial for the climate after all. The figure shows that the latter effect dominates

the former if the number of oligopolists becomes larger than 2. Panel (b) shows that

social welfare is monotonically increasing in the number of oligopolists. Moreover,

due to lower climate change, the oligopoly-fringe equilibrium may generate higher

welfare than under perfect competition, if the number of oligopolists is large enough.

On the basis of Figure 7, we can conclude that the recent collapse of the OPEC cartel

has increased social welfare. The effect on climate damage, however, depends on the

remaining level of collusion.

Figure 8 examines the welfare and climate effects of the recent shale oil revolution,

characterized by an increase in the proven reserves to 433 billion barrels (left panels)

and a decrease in marginal extraction costs to 60 US$/bbl (right panels). Panels (a)

and (b) show that the increase in resource reserves and a decrease in extraction costs
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Figure 8: Welfare effects of the ‘shale revolution’

Panel (a) - Initial stock vs. grey welfare Panel (b) - Extraction costs vs. grey welfare
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would have lead to higher grey welfare under perfect competition and in the first best.

However, in the cartel/oligopoly-fringe equilibrium, these relationships are reversed

or become non-monotonic, due to the conservation and sequence effects. Panels (c)

and (d) show that both the increase in reserves and the decrease in extraction costs

have caused higher climate damages. In our benchmark calibration, it turns out that

the increase in the fringe’s oil reserve has lowered social welfare, although it would

have enhanced social welfare under perfect competition and, obviously, in the first-

best, as shown in panel (e). Panel (f) shows that the relationship between marginal

extraction costs of the fringe and social welfare is non-monotonic in the two imperfectly

competitive equilibria. In our benchmark case with n = 2, the decrease in extraction

costs from 90 to 60 US$/bbl has lowered social welfare.

6 Conclusion

We have developed an oligopoly-fringe model to examine the implications of recent

developments on the global energy market, the collapse of OPEC as a cartel and the

shale revolution in the US and Canada, for the time paths of oil prices and extraction,

for the effectiveness of climate policies, and for climate damage as well as social

welfare. We have taken account of the existence of renewables that are (perfect)

substitutes for fossil fuel and that can be produced in unlimited amounts by using

backstop technologies.

By establishing the existence of and by fully characterizing a Nash-Cournot equilib-

rium on the energy market, we were able to show that the oligopolists and the fringe

start out supplying simultaneously to the market, despite their differing extraction

costs. If the relative initial stock of the fringe is large, the phase with simultaneous

supply will be followed by a phase during which only the fringe is extracting. However,

if the initial stock of the cartel is relatively large, the phase with simultaneous supply

will be followed by a period during which only the oligopolists are active. During this

period, depending on their remaining resource stock and on the marginal profits at the

limit price, the oligopolists either choose to price strictly below the price of renewables,

or to perform a limit-pricing strategy of just undercutting the renewables price. The

collapse of OPEC as a cartel decreases the likelihood of a limit-pricing phase occurring,
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and lowers its maximum duration.

Furthermore, we have shown that the break-down of OPEC has an ambiguous effect

on climate damages. On the one hand, climate change is accelerated as extraction

becomes less conservative. On the other hand, extraction of the fringe is back-loaded,

which slows down climate change if the fringe’s resource is relatively dirty. Oil from tar

sands in Canada that may soon be transported by the Keystone XL pipeline to refineries

in the US might qualify for an even dirtier resource supplied by the fringe. As a result,

climate damage in the oligopoly-fringe equilibrium may even become larger than under

perfect competition.

Our results also show that the the recent shale oil revolution not only increases

climate damage due to larger cumulative emissions, but also lowers grey welfare as it

crowds out (postpones) the extraction of relatively cheap OPEC oil. Finally, we have

demonstrated that a Weak Green Paradox does not occur upon a renewables subsidy if

the initial relative stock of the oligopolists is large enough, compared to the fringe.

In future work, it would be interesting to determine the feedback Nash equilibrium

for our model. Moreover, the existence of multiple equilibria should be investigated.

Furthermore, it seems worthwhile to characterize optimal and second-best policies.

Another promising direction for future research would be the introduction of strategic

interaction between energy suppliers and energy demanders.
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Appendix

A.1 Equilibrium sequences

Lemma A.1 Suppose the equilibrium reads S → F with transition at T c and final time

T . Then

rβSf0 = − n(kf − kc)(rT c − 1 + e−rT
c) + (b̂− kf )(rT − 1 + e−rT )

+ (α− τ − b̂)rT, (A.1a)

rβSc0 = n(kf − kc)(rT c − 1 + e−rT
c). (A.1b)

Proof. Along S we have (12c) and (12d). Along F we have (11c). Furthermore

λf = (b̂− kf )e−rT . Also λc = (kf − kc)e−rT c + λf = (kf − kc)e−rT c + (b̂− kf )e−rT . Then

taking the time integrals of qf and qc yields the result. �

Lemma A.2 Suppose the equilibrium reads S → L̂ with transition at T and final time T c.

Then

rβSf0 = (α− τ + nkc − (n+ 1)kf )(rT − 1 + e−rT ), (A.2a)

rβSc0 = (b̂− (α− τ) + n(kf − kc))(rT − 1 + e−rT )

+ (α− τ − b̂)rT c, (A.2b)

(b̂− kc)e−rT c =
[(

1 + 1
n

)
b̂− α− τ

n
− kc

]
e−rT . (A.2c)

Proof. Along S we have (12c) and (12d). Along the L̂-phase we have (14b). It follows

from (12a) that λf = (b̂−kf )e−rT . It follows from (12b) and continuity of the price and

the Hamiltonian of the cartel that λc =
[(

1 + 1
n

)
b̂− α−τ

n
− kc

]
e−rT . Condition (A.2c)

is obtained by combining (9b) and (10). Then taking the time integrals of qf and qc

yields the result. �

Lemma A.3 Suppose the equilibrium reads S → L̃ with transition at T and final time T c.
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Then

rβSf0 =
(
α− τ + nkc − (n+ 1)kf

)
rT − n(b̂− kc)e−rT c(1− erT )

− (n+ 1)(b̂− kf )(1− e−rT ), (A.3a)

rβSc0 = n(kf − kc)rT + n(b̂− kf )(1− e−rT ) + n(b̂− kc)e−rT c(1− erT )

+ (α− τ − b̂)r(T c − T ). (A.3b)

Proof. Along S we have (12c) and (12d). Along the L̃-phase we have (14b). It follows

from (10) that λc = (b̂ − kc)e−rT c. It follows from (12a) together with price continuity

that λf = (b̂− kf )e−rT . Then taking the time integrals of qf and qc yields the result. �

Note that the Hamiltonian is discontinuous at T if the initial stocks differ from those in

Lemma A.2: qc and µ jumps upward T , while qf jumps downward.

Lemma A.4 Suppose the equilibrium reads S → C → L̂ with transitions at T1 and T2

and final time T c. Then

rβSf0 =
(
α− τ + nkc − (n+ 1)kf

)
(rT1 − 1 + e−rT1), (A.4a)

rβSc0 = n

n+ 1
(
(n+ 1)kf − nkc − (α− τ)

)
(rT1 − 1 + e−rT1)

+ n

n+ 1

(
n+ 1
n

b̂− kc − α− τ
n

)
(rT2 − 1 + e−rT2)

+ (α− τ − b̂)rT c, (A.4b)

(b̂− kc)e−rT c =
[(

1 + 1
n

)
b̂− α− τ

n
− kc

]
e−rT2 . (A.4c)

Proof. Along S we have (12c) and (12d). Along the C-phase we have (13c). Along the

L̂-phase we have (14b). Moreover, we have λc = (b̂− kc)e−rT c. The price is continuous

at T1 and T2 so that

kf + λferT1 = 1
n+ 1

(
α− τ + n(kc + λcerT1)

)
, (A.5a)

α− τ − b̂
β

= 1
β

n

n+ 1(α− τ − kc − λcerT2). (A.5b)

Condition (A.4c) is obtained by combining (9b) and (10). Then taking the time inte-

grals of qf and qc yields the result. �
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A.2 Proofs of Lemmata and Propositions

Proof of Lemma 2.

Part (i). Given our definition of C and F a transition can only take place at a

moment T where the price is below b. Indeed, in an equilibrium the price is increasing

in both phases and must therefore be smaller than b. The price is continuous at T :

p(T ) = α− β(qf (T ) + qc(T )) = kf + λferT

= 1
n+ 1(α− τ + n(kc + λcerT )).

If we have F → C then it follows from (11a) and (11b) that kf + λferT ≤ kc +

λcerT . Hence
[
(n+ 1)(kf + λferT )− (α− τ)

]
1
n
≥ kf + λferT , implying p(T ) ≥ α − τ , a

contradiction. The proof for C → F is similar.

Part (ii). Suppose it is optimal to have F → L̂ or F → L̃ and assume the transition

takes place at T . Then for 0 ≤ t ≤ T we have

qf (t) = α− τ − kf − λfert

β
, qf (T ) = α− τ − b̂

β
(A.6)

because of price continuity. Hence:

b̂− kf = λferT ,

qf (t) = α− τ − kf − (b̂− kf )ert−rT
β

.

The oligopolists should not want to supply before T so that for 0 ≤ t ≤ T we have

α− τ − β[α− τ − k
f − (b̂− kf )er(t−T )

β
] ≤ kc + λcert = kc + (b̂− kc)er(t−T c), (A.7)

from (10), or kf (1 − er(t−T )) − kc(1 − er(t−T c)) ≤ b̂ert−rT
c(1 − er(T c−T )). Take the limit

for t approaching T . Then the condition boils down to (b̂ − kc)(1 − er(T−T
c)) ≤ 0, a

contradiction.

Part (iii). Along F we have kf+λfert ≤ kc+λcert, which implies kf−kc ≤ (λc−λf )ert.

At the transition from F to S at say T we have from the continuity of the price kf−kc =

(λc − λf )ert. Because we have assumed kf > kc, the left-hand sides of the latter two

expressions are positive. Hence, the right-hand side of these expressions is growing
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over time. However, since F precedes S, (λc − λf )ert is larger than kf − kc before T

and equal to kf − kc at T . Hence, the right-hand sides must be declining, which yields

a contradiction.

Part (iv). Suppose the initial regime is C. Then it follows from (13a) and (13b) that

along C we have α− τ + nkc − (n+ 1)kf ≤ ((n+ 1)λf − nλc)erT . There is no transition

possible to F. Hence there must be a transition to S, say at T. So α−τ+nkc−(n+1)kf =

((n + 1)λf − nλc)erT . Since α − τ + nkc − (n + 1)kf > 0 by assumption and C starts at

time 0, we have (n+ 1)λf −nλc > 0, so that ((n+ 1)λf −nλc)ert is increasing over time,

yielding a contradiction. �

Proof of Lemma 3. Along S we have (12c) and (12d). Moreover, λc = (b̂ − kc)e−rT

and p(T ) = α − β(qf (T ) + qc(T )) = b̂ so that λf = (b̂ − kf )e−rT . Then taking the time

integrals of qf and qc yields the result. �

Proof of Lemma 5. First rewrite the system (A.1a) and (A.1b) as

F (T c, T ) = − n(kf − kc)(rT c − 1 + e−rT
c) + (b̂− kf )(rT − 1 + e−rT )

+ (α− τ − b̂)rT − rβSf0

H (T c, T ) = n(kf − kc)(rT c − 1 + e−rT
c)− rβSc0

Given Sc0, if the equilibrium reads S → F then the transition time T c = TS denotes the

duration of the equilibrium the equilibrium that reads S.

Now given T c = TS, is there a solution T ≥ TS that solves F (TS, T ) = 0? When

Sf0 = Sf0S we have F (TS, TS) = 0, so when Sf0 > Sf0S we get F (TS, TS) < 0. We derive

FT = r
(
(b̂− kf )(1− e−rT ) + (α− τ − b̂)

)
> 0,

FTT = r2(b̂− kf )e−rT > 0.

Hence, F is monotonically increasing and strictly convex in T . As a result, there exists

at most one T that solves F (TS, T ) = 0 with T > TS. Such a solution exists if

lim
T→∞

F (TS, T ) > 0.
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We have limT→∞F (TS, T ) = limT→∞
(
b̂− kf + α− τ − b

)
rT =∞. �

Proof of Lemma 6. Given Sf0 there exists a unique T denoted T̂S that satisfies

rβSf0 = (α− τ + nkc − (n+ 1)kf )(rT − 1 + e−rT ).

Next, we establish that T̂S > TS. Note from (17a)-(17b) that TS is the solution to

rβSf0 = (b̂+ nkc − (n+ 1)kf )(rTS − 1 + e−rTS ) + (α− τ − b̂)rTS

= (α− τ + nkc − (n+ 1)kf )(rTS − 1 + e−rTS ) + (α− τ − b̂)
(
1− e−rTS

)
.

Let f (T ) ≡ (α − τ + nkc − (n + 1)kf )(rT − 1 + e−rT ). We have f ′ > 0 and f
(
T̂S
)

=

f (TS) + (α− τ − b̂)
(
1− e−rTS

)
> f (TS), implying T̂S > TS.

We now argue that there exist T c = TLM + T̂LM and Ŝc0 > Sc0S + SLM which satisfy

(A.2b) and (A.2c):

rβŜc0 = (b̂− (α− τ) + n(kf − kc))(rTLM − 1 + e−rT̂S )

+ (α− τ − b̂)r
(
T̂S + T̂

)
, (A.8a)

(b̂− kc)e−rT̂ = (1 + 1
n

)b̂− α− τ
n
− kc). (A.8b)

Condition (A.2c) is satisfied by definition of T̂LM .

The rest of the proof consists of showing that the stock given by (A.8a), Ŝc0, is larger

than S0S + SLM . Using the definition of SLM , (A.8a) becomes

rβ
(
Ŝc0 − SLM

)
= (b̂− (α− τ) +n(kf − kc))(rT̂S − 1 + e−rT̂S ) + (α− τ − b̂)rT̂S. (A.9)

Summing (A.2a) with T = T̂S and (A.9) yields

rβ
(
Ŝc0 − SLM + Sf0

)
= (α− τ + nkc − (n+ 1)kf )(rT̂S − 1 + e−rT̂S )

+ (b̂− (α− τ) + n(kf − kc))(rT̂S − 1 + e−rT̂S )

+ (α− τ − b̂)rT̂S,
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which simplifies into

rβ
(
Ŝc0 − SLM + Sf0

)
= (b̂− kf )(rT̂S − 1 + e−rT̂S ) + (α− τ − b̂)rT̂S, (A.10)

= (b̂− kf )g
(
T̂S
)

+ (α− τ − b̂)rT̂S, (A.11)

where g(T ) ≡ rT − 1 + e−rT . By definition of Sc0S we have

rβSf0 = (b̂+ nkc − (n+ 1)kf )(rTS − 1 + e−rTS ) + (α− τ − b̂)rTS, (A.12a)

rβSc0S = n(kf − kc)(rTS − 1 + e−rTS ). (A.12b)

Summing (A.12a) and (A.12b) gives

rβ
(
Sc0S + Sf0

)
= (b̂− kf )(rTS − 1 + e−rTS ) + (α− τ − b̂)rTS, (A.13)

= (b̂− kf ) g (TS) + (α− τ − b̂)rTS. (A.14)

Since g (T ) + (α− b)rT is increasing in T and since T̂S > TS , we have from (A.11) and

(A.14) rβ
(
Sc0S + Sf0

)
< rβ

(
Ŝc0 − SLM + Sf0

)
, implying Ŝc0 > Sc0S + SLM . �

To prove Lemma 8 it will be useful to make the following two remarks.

Remark 1 Given Sf0 , when Sc0 → Sc0S we have T c → T → TS: the L̃ collapses. Indeed

simple substitution of Sc0 by Sc0S, T by TS and T c by TS shows that the system (A.3a),

(A.3b) becomes after simplification

rβSf0 = (b̂+ nkc − (n+ 1)kf )(rTS − 1 + e−rTS ) + (α− τ − b̂)rTS, (A.15a)

rβSc0S = n(kf − kc)(rTS − 1 + e−rTS ), (A.15b)

which holds by definition of TS and Sc0S.
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Remark 2 Similarly when Sc0 = Ŝc0 then T = T̂S and T c = T̂S + T̂LM solve the system

rβSf0 =
(
α− τ + nkc − (n+ 1)kf

)
rT − n(b̂− kc)e−rT c(1− erT )

− (n+ 1)(b̂− kf )(1− e−rT ), (A.16a)

rβSc0 = n(kf − kc)rT + n(b̂− kf )(1− e−rT ) + n(b̂− kc)e−rT c(1− erT )

+ (α− τ − b̂)r(T c − T ). (A.16b)

Indeed we know that they satisfy

rβSf0 = (α− τ + nkc − (n+ 1)kf )(rT − 1 + e−rT ), (A.17a)

rβSc0 = (b̂− (α− τ) + n(kf − kc))(rT − 1 + e−rT )

+ (α− τ − b̂)rT c, (A.17b)

(b̂− kc)e−rT c =
[(

1 + 1
n

)
b̂− α− τ

n
− kc

]
e−rT . (A.17c)

substituting (b̂− kc)e−rT c by
[(

1 + 1
n

)
b̂− α−τ

n
− kc

]
e−rT into (A.16a) yields the result.

Proof of Lemma 8. The proof consists of showing that for any Sf0 and for any Sc0 ∈[
Sc0S, Ŝ

c
0

]
there exists T and T c ≥ T such that (A.3a) and (A.3b) are satisfied. The sum

of (A.3a) and (A.3b) reads

rβ

Sf0 + Sc0 −
α− τ − b̂

β
(T c − T )

 = (α− τ − kf )rT − (b̂− kf )(1− e−rT ). (A.18)

Condition (A.18) defines a unique relationship between the duration of limit pricing

T c−T and the time of transition (or duration of the S phase); we rewrite this condition

as

T c − T = H
(
T, Sf0 , S

c
0

)
≡
rβ
(
Sf0 + Sc0

)
− (α− τ − kf )rT + (b̂− kf )(1− e−rT )

(α− τ − b̂)r
.

Manipulations allow to rewrite (A.3a) as er(T c−T ) = Z
(
T, Sf0

)
, with

Z
(
T, Sf0

)
≡ n(b̂− kc)(1− e−rT )
rβSf0 + (n+ 1)(b̂− kf )(1− e−rT )− (α− τ + nkc − (n+ 1)kf )rT

.
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Substituting T c − T = H
(
T, Sf0 , S

c
0

)
allows to characterize T as the solution to

W
(
T, Sf0 , S

c
0

)
= 0, with W

(
T, Sf0 , S

c
0

)
≡ eH(T,Sf

0 ,S
c
0) − Z

(
T, Sf0

)
. (A.19)

We argue that for any Sc0 ∈
[
Sc0S, Ŝ

c
0S + SLM

]
there exists a solution T to (A.19). From

Remark 1 and Remark 2 above we get

W
(
TS, S

f
0 , S

c
0S

)
= 0 = W

(
T̂S, S

f
0 , S

c
0S + SLM

)
.

As W
(
T, Sf0 , S

c
0

)
is an increasing function of Sc0, we have for any Sc0 ∈ (Sc0S, Sc0S + SLM)

W
(
TS, S

f
0 , S

c
0

)
> W

(
TS, S

f
0 , S

c
0S

)
= 0,

W
(
T̂S, S

f
0 , S

c
0

)
< W

(
T̂S, S

f
0 , S

c
0S + SLM

)
= 0.

Since W
(
T, Sf0 , S

c
0

)
is a continuous function of T (CHECK) we can therefore state that

for any Sc0 ∈ [Sc0S, Sc0S + SLM ] there exists a solution T ∈
[
TS, T̂S

]
to W

(
T, Sf0 , S

c
0

)
= 0.

We still need to check that for any Sc0 ∈ (Sc0S, Sc0S + SLM) we have H
(
T, Sf0 , S

c
0

)
≥ 0.

Note that H
(
T, Sf0 , S

c
0

)
> H

(
T, Sf0 , S

c
0S

)
. Furthermore, H is a decreasing function of T

since kf < b̂ < α− τ :

HT = − (α− τ − kf ) + (b̂− kf )e−rT

(α− τ − b̂)
< 0 for T ≥ 0.

Therefore, we have

H
(
T, Sf0 , S

c
0

)
> H

(
T, Sf0 , S

c
0S

)
> H

(
TS, S

f
0 , S

c
0S

)
= 0. �

Proof of Lemma 8. The proof consists of showing that there exist T1 and T2 such that

the system (A.4a)-(A.4c) holds, where T c = T2 + T̂LM . Note that given Sf0 the solution

to rβSf0 = (α − τ + nkc − (n + 1)kf )(rT − 1 + e−rT ) is unique and therefore T1 is the

same as the duration of the S phase when Sc0 = Sc0S + SLM that is when the regime

reads S → L̂.
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The proof now consists of showing that there exists T2 that solves

Y(T2) ≡ − rβSc0 + n

n+ 1
(
(n+ 1)kf − nkc − (α− τ)

)
(rT1 − 1 + e−rT1)

+ n

n+ 1

(
n+ 1
n

b̂− kc − α− τ
n

)
(rT2 − 1 + e−rT2)

+ (α− τ − b̂)rT c = 0.

We know that Y (T1) < 0 for Sc0 > Ŝc0 since Y (T1) = 0 when Sc0 = Ŝc0. Moreover, we

have limT2→∞Y (T2) = ∞ and Y′ > 0, which implies the existence and unicity of T2

that solves Y (T2) = 0. �

Proof of Proposition 4.

Proof of Proposition 2.

A.3 First-best and perfectly competitive equilibrium
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