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Abstract

Bioeconomic models can be used to value single and multiple coupled natural capital
stocks as assets under real-world management conditions. In this paper we extend
prior work to consider the valuation of assets linked through deterministic relation-
ships (i.e. biophysical coupling or shared management) to assets with stochastic dy-
namics including when there are multiple stock with correlated stochastic processes.
We derive asset prices for natural capital stocks governed by correlated diffusions and
show how function approximation techniques can be used to approximate these shadow
prices across the domain of capital stocks. Using single- and multi-species examples,
we demonstrate the combined role of biophysical dynamics, the management feed-
back rule, and the properties of the valuation function for benefits flows in influenc-
ing the salience of risk in the pricing of natural assets. Finally, we examine how
the interplay between the deterministic links between capital stocks (i.e. through
ecological interactions) and their covariance can enhance or dampen substitutabil-
ity/complementarity relationships that are at the heart of the sustainable management
dilemma.
Keywords: Natural Capital; Real Assets; Sustainability; Risk
JEL Codes: G12, G32, Q01, Q56, Q57

1 Introduction

What is the value to society of a change in a particular natural capital stock or portfolio of

capital stocks? There are two reasons the answer to this question is important. First, the

answer would provide the relevant quantity to use as the opportunity cost of the consumption

of natural capital (i.e. clearing of an acre of wild lands or harvesting a ton of fish) for the
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purposes of social benefit-cost analysis. Second, the valuation of capital assets (especially

natural capital) is critical to assessing the sustainability of the planet, its nation states,

and bounded social-ecological systems. Maintenance of society’s “productive capacity” - its

ability to ensure non-declining intertemporal social welfare (i.e. the net present value of

welfare flows) requires maintaining the overall portfolio value of society’s assets (Dasgupta,

2001; Dasgupta and Mäler, 2000). This “inclusive wealth” is often presented as a linear

index of the quantities of specific capital stocks, where the weights on these quantities are

the monetized “accounting prices” or “shadow prices” for each capital stock. Yet, the prices

themselves are functions of stock quantities. Therefore, the inclusive wealth index is not

truly linear in stocks and can capture substitution opportunities (Yun et al., 2017). These

asset prices are forward-looking in the sense that they represent all the benefits and costs

of an additional investment in a particular capital stock. They are also inherently grounded

in a particular scenario (i.e. the “economic program” or “resource allocation mechanism”)

for how the capital stock (and any interrelated stocks) are managed today and will be

managed into the indefinite future. Dasgupta (2001) has argued forcefully that in order

for inclusive wealth to provide operational input to policy makers about the sustainability

of their economies, shadow prices should avoid scenarios of optimality and efficiency that

dominate the literature and instead be grounded in realistic “economic programs” that reflect

existing imperfect institutions and policies.

Wealth-based measures of sustainability have gained substantial credibility beyond economists

(e.g., Matson, Clark, and Andersson (2016)) and are regularly employed by the United Na-

tions Environment Programme and the World Bank for the sustainability assessment of

nation states (UNU-IHDP and UNEP, 2014). They have also been used to manage the

sustainability of bounded systems such as cities (Dovern, Quaas, and Rickels, 2014), hydro-

logical catchments (Pearson et al., 2013) and as an indicator of sustainable management for

ecosystems (Yun et al., 2017). Nonetheless, the applicability of inclusive wealth has been

hampered by the frequent lack of reliable values for the shadow prices of natural capital.
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Aside from a small number of exhaustible minerals and some forests, most forms of natural

capital lack asset markets from which to obtain prices. Furthermore, many natural capital

stocks provide service flows that are non-excludable and/or non-rivalrous and are managed

in demonstrably inefficient, ‘kakatopic’ ways - forestalling the use of shadow prices from

optimized bioeconomic models as a realistic guide for sustainability assessment. The result

for wealth-based assessments is that many forms of natural capital have been excluded from

accounts altogether - implicitly receiving shadow prices of zero.

In an attempt to address this ‘Achilles’ heel’ of sustainability (Smulders, 2012), Fenichel

and Abbott (2014) provided a rigorous derivation of the shadow price of natural capital

under general, non-optimized forms of management, and link their derivation to foundation

economic capital theory, a la Jorgenson. They showed how bioeconomic models combining

the valuation of benefit flows from natural capital (i.e. ecosystem services), stock dynamics

of natural capital, and feedbacks between capital stocks and human behavior (as shaped by

institutions) can be combined with function approximation approaches to implement this

valuation across the domain of natural capital stocks (Fenichel et al., 2016).1

This approach has subsequently been expanded to allow for the valuation of a portfolio

of capital stocks whose dynamics may be interlinked through physical or biological processes

or via human behavior (Yun et al., 2017). These methods have been used to value a range

of natural capital stocks, from fish in single-species fisheries (Fenichel and Abbott, 2014),

groundwater (Fenichel et al., 2016), coastal habitat (Bond, 2017), and an assemblage of

interacting fish stocks (Yun et al., 2017).

Despite this significant progress, the theory and practice of natural capital valuation re-

main incomplete in that the shadow price formulae and approximation approaches fail to

reflect the role of uncertainty in the evolution of natural capital stocks. Just as the volatility

associated with the returns on a marketed asset is reflected in its share price, so should the

shadow prices of natural capital reflect the uncertainties associated with its physical ‘capital

1See Fenichel, Abbott, and Yun (2018) for a detailed development of natural capital pricing.
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gains.’ Model-based shadow prices are inherently dependent on the underlying specification

of the model of natural capital dynamics. However, there is often significant uncertainty with

regard to these models. Our understanding of many natural processes is at best incomplete,

with the result that the actual evolution of natural capital could deviate significantly from

any specific model. The valuation of such an inherently risky asset may differ significantly

from one where the capital dynamics are deterministic and known with certainty. Further-

more, many natural capital stocks in a given system are differentially vulnerable to a wide

array of systemic and idiosyncratic shocks, with the result that changes in their stocks may

be correlated - even in the absence of fundamental interactions in their dynamics. Since

sustainability requires managing the wealth contained in a portfolio of capital stocks, it may

be important to sustainable management to understand how the properties of the covari-

ance structure of stocks in the ‘ecosystem fund’, influences the overall value of the portfolio

and how this correlated volatility interacts with the mechanistic interactions between capital

stocks and the portfolio balancing decisions embodied in management policies.

In this paper, we extend the work of Fenichel and Abbott (2014) and (Yun et al., 2017)

to derive the shadow values for single stock dynamics subject to a stochastic process and for

multiple physically-interacting capital stocks when their dynamics are influenced by stochas-

tic and correlated diffusion processes. We show how these shadow prices can be approxi-

mated, given a full bioeconomic model and specification of the diffusion process, through

an extension of the functional approximation technique employed in (Yun et al., 2017). We

first revisit the model used in Fenichel and Abbott (2014), but assume the stock dynamics

are stochastic. Then, we demonstrate our approach using a simple model of two ecologically

interacting species. Drawing upon modern portfolio theory, we emphasize how the stochastic

dynamics of natural assets can interact in different ways with the deterministic, structural

relations between these assets to influence the overall sustainability of the managed system.

We show how the portfolio re-balancing conditions embodied in the ‘economic program’, a

feedback rule denoting how stocks are depleted in response to the current state of the sys-
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tem, can be valued in expectation using the value functions and inclusive wealth measures

that spring from our approach. The analyses provide two important insights. First, the

influence of stochastic dynamics in single stock systems may be relatively small, building

confidence in simpler deterministic analyses. Second, the results provide new insights into

the self-insurance role of ecosystems.

2 Derivation of shadow pricing formula

2.1 The single asset case

Let s(t) represent the known stock of a scalar capital stock at time t.2 Suppose the dynamics

of s are represented by a diffusion (also known as an Ito) process and stationary infinitesimal

parameters µ (s, x (s)) and σ(s). The diffusion process is written as follows:

ds(t) = µ (s(t), x (s(t))) dt+ σ(s(t))dZ(t) (1)

where dZ(t) is an increment of a Wiener process (Stokey, 2009). Notice that the drift of the

diffusion µ (s, x (s)) is specified as a function of the current capital stock and as a function

of the feedback control rule of the economic program, x(s). There is no uncertainty in the

behavioral feedbacks, although future work may consider extending the results to this case.

This implies that stochasticity comes through the ecological production process. Once the

substitution for the economic program has been made, the drift is an explicit function of

only s.

Define the intertemporal welfare function, evaluated along the economic program and

along the stochastic capital trajectory given by (1), as

V (s (t)) = Et
[∫ ∞

t

e−δ(τ−t)W (s (τ) , x (s (τ))) dτ

]
(2)

2t is suppressed when doing so does not cause confusion.
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The marginal value of an investment in the capital stock in expectation is defined as p(s) ≡

Vs. To derive the properties of p(s), start by differentiating (2) with respect to t.

dV

dt
= Et

[
δ

∫ ∞
t

e−δ(τ−t)W (·) dτ −W (s (t) , x (s (t)))

]
= δV −W (s (t) , x (s (t))) (3)

The first equality in (3) assumes that the derivative can be carried through the expectation

operator, which is ensured by the stationarity of the infinitesimal parameters of (1). The

second equality holds because the state of the system is known at τ = t.

We know that dV
dt

= Et[dV ]
dt

. By Ito’s Lemma

dV =

[
µ (s)Vs +

1

2
σ2 (s)Vss

]
dt+ σ (s)VsdZ

Taking the expected value, and employing the property that all stochastic integrals are

identically zero (Stokey, 2009):

Et[dV ] =

[
µ (s)Vs +

1

2
σ2 (s)Vss

]
dt

so that

dV

dt
=

Et[dV ]

dt
= µ (s)Vs +

1

2
σ2 (s)Vss (4)

Setting (3) equal to (4) we obtain the stochastic Hamilton-Jacobi-Bellman (HJB) equation:

δV (s) = W (s (t) , x (s (t))) + µ (s)Vs +
1

2
σ2 (s)Vss (5)

If we substitute p(s) ≡ VS into the HJB equation yielding:

δV (s) = W (s (t) , x (s (t))) + p (s)µ (s) +
1

2
σ2 (s) ps (s) (6)

The first two terms on the RHS are the traditional deterministic current-value Hamilto-
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nian. The third term captures the effect of risk even if the deterministic rate of change in

the capital stock µ(s) = 0. The risk effect captures the effect of Jensen’s inequality via the

curvature of the intertemporal welfare function. If the shadow price function is downward

sloping then ps < 0 so that risk has a negative effect on the intertemporal welfare function.

Suppressing functional dependency on s, and differentiate (6) with respect to s yields:

δp = Ws + µsp+ µps + σσsps +
1

2
σ2pss

Isolating p on the left-hand side we obtain the asset pricing equation:

p(s) =
Ws + [µ(s) + σ(s)σs(s)]ps + 1

2
σ2(s)pss

δ − µs(s)
(7)

In the case where the variance of the noise in (1) does not depend on s then (2.1) reduces

to:

p(s) =
Ws + µ(s)ps + 1

2
σ2(s)pss

δ − µs(s)

and if capital dynamics are deterministic then this further reduces to

p(s) =
Ws + µ(s)ps
δ − µs(s)

which is the same as in (Fenichel and Abbott, 2014) who linked this equation to Jorgenson

(1963).

The general asset pricing equation equation (7) contains two additional numerator terms

relative to Fenichel and Abbott’s deterministic derivation. The first term enters in a way

that is symmetric to capital gains in a deterministic system and depends on the extent of

“risk aversion” embodied in the curvature of of the intertemporal welfare function (since

ps ≡ Vss) and the extent to which the standard deviation of the diffusion is elastic with

respect to s. If increasing investment in s increases the size of shock, and if the shadow price

function is decreasing in the stock (analogous to risk aversion), then this results in a “capital
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loss.” This term only matters if the variance depends on the capital stock, as in the case of

geometric Brownian motion. Importantly, curvature of the intertemporal welfare function,

which is defined over the domain of capital stocks, need not result from underlying curvature

of the “social utility” or real income function for welfare flows W (·). Indeed, the nature of

risk preferences over flows embodied in W (including risk neutrality) may have no direct

mapping to the curvature of V (s). Curvature of the intertemporal welfare function can be

inherited from the underlying biophysical dynamics in (1) or from the economic program

x(s) - suggesting that the risk premia embodied in the numerator of (7) are endogenous to

policy and may reflect actual existing levels of self-insurance and self-protection (Ehrlich and

Becker 1972). This first term pertains to how a marginal investment in the capital stock

increases risk, holding the curvature of the intertemporal welfare function constant.

The second additional term in (7) is always present with stochastic dynamics and depends

on the properties of the third derivative of the value function. There will be a premium if

there is a positive third derivative (convex price function), while a negative third derivative

(concave price function) yields a discount. If the value function is quadratic (i.e. zero

derivatives above the second derivative), then this term is zero. Both additional terms in

the numerator of (7) originate from differentiating 1
2
σ2(s)ps term in (6). This second can be

interpreted as the affect of a marginal increase in the capital stock on risk aversion, holding

risk constant or interpreted as “prudence,” which is associated with precautionary savings

(Kimball 1990). If risk aversion or prudence is increased by the investment (Vsss = pss < 0)

then the shadow price is decreased. In other words, the pricing of risk into the capital asset

depends on how an investment affects the sensitivity to risk, given the biophysical dynamics

and economic program in place, in addition to how the marginal investment affects the risk

itself. This can be thought of as a “self insurance effect” because changes in the curvature of

the intertemporal welfare function impact the consequences of stochastic events rather than

their probability (Shogren and Crocker 1999).
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2.2 The multi-stock case

Let s(t) ∈ RS and x(s(t)) : RS → RXand extend the diffusion in (1) to S distinct Ito

processes

dsi = µi (s,x (s)) dt+ σi(s)dZi(t) for i = 1, . . . , S (8)

The dZi(t) can be correlated with a S × S correlation matrix ρ such that the covariance of

the stochastic components of capital stocks i and j, which may differ from their observed

covariance in-sample due to the presence of deterministic relations between the stocks in (8),

is Et [σi(s)dZi(t)σj(s)dZj(t)] = σi(s)σj(s)Et [dZi(t)dZj(t)] = σi(s)σj(s)ρijdt. Notice that if

i = j, then the expression simplifies to σi(s)2dt.

While the decomposition of the noise into a correlation matrix and standard deviations

is intuitive and useful for model parameterization intuition, we work directly with the co-

variance matrix to conserve on notation. Therefore, let Ω(s) be a S × S covariance matrix

of the noise terms such that Cov(dsi, dsj) = Ωij(s) dt. A Cholesky decomposition of the

covariance matrix yields Ω(s) = ω(s)ω(s)′.3

Redefine the instantaneous return functions and intertemporal welfare functions in the

multi-stock case as W (s (t) ,x (s (t))) and V (s(t)). Once again, we know that dV
dt

= Et[dV ]
dt

.

Applying Ito’s Lemma (Dixit and Pindyck, 1994) yields:

dV (s) =

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
dt+

S∑
j=1

σj(s)VsjdZ
j

Finding the expected value and dividing through by dt:

dV

dt
=

Et[dV ]

dt
=

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
(9)

3This approach generalizes (8) slightly by technically allowing for the correlation matrix - not just the
standard deviations - to vary in the stock vector.
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Setting (9) equal to the multidimensional generalization of (3) yields the HJB equation.

δV (s) = W (s (t) ,x (s (t))) +

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
(10)

Partial differentiation of (10) yields the following expression for the shadow price of si

pi(s) =
Wsi +

(
∂pi

∂si
µi +

∑S
j 6=i

∂pj

∂si
µj
)

+
∑S

j 6=i p
jµj

si
+ 1

2

∑S
j

∑S
k

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)
δ − µi

si

Factoring the final numerator term yields the final asset pricing equation.

pi(s) =

[
Wsi +

(
∂pi

∂si
µi +

S∑
j 6=i

∂pj

∂si
µj

)
+

S∑
j 6=i

pjµj
si

+
1

2

S∑
j=1

(
σ2j
si
∂pj

∂sj
+ σ2j ∂

2pj

∂sj∂si

)

+
1

2

S∑
j=1

S∑
k 6=j

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)]/(
δ − µisi

)
(11)

The first numerator term in (11) has the same interpretation as in the single-asset case. The

next two terms in the numerator are present in the deterministic multi-asset case (Yun et al.,

2017) and are forms of “capital gains.” The second numerator term
(
∂pi

∂si
µi +

∑S
j 6=i

∂pj

∂si
µj
)

reflects the effects of investment in si on the shadow price of stock i due to its prices of all

assets in the portfolio (i.e. “price effects”). The third numerator term
∑S

j 6=i p
jµj

si
captures

the deterministic effects of investment in stock i on the physical growth rates of all other

stocks (“cross-stock effects”), which can stem from system ecology or production interactions

within the economic program.

The additional numerator terms in (11) are only present in the stochastic case. The third

term 1
2

S∑
j=1

(
σ2j
si
∂pj

∂sj
+ σ2j ∂

2pj

∂sj∂si

)
operates solely through the individual variances of each

asset and captures the “risk sensitivity” effect of an investment in asset i on the variance

of each asset, σ2j
si
∂pj

∂sj
. This part of the term reflects how substitution and complementarity

relationships can provide “self-protection” through “portfolio diversification,” which is the
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endogenous risk concept. Importantly, the σ2j ∂2pj

∂sj∂si
term represents prudence and accounts

for the fact that investments in i also affects the sensitivity to risk for all S assets, σ2j ∂2pj

∂sj∂si
,

even if the variance for these other assets remains unchanged by the investment. This means

that this term influences the consequences of stochastic events, and can be thought of as a

self-insurance term. Together, these terms mirror the numerator terms, σ(s)ps + 1
2
σ2(s)pss,

in (7).

The final term in the numerator of (11), 1
2

S∑
j=1

S∑
k 6=j

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)
, reflect the

risk-related effects of investing in asset i that are mediated through the covariances of assets

in the portfolio. This term is zero in the case that natural capital stocks are uncorrelated

regardless of the vector of capital stocks. Ωjk
si
∂pj

∂sk
is the effect of an investment in i on the

covariances between other assets j, k as valued through the first cross-partial between these

assets (i.e. the 2nd cross-partial of the intertemporal welfare function). If the covariances

between asset stocks are invariant to capital stocks then this term is zero. Ωjk ∂2pj

∂sk∂si
reflects

the fact that investing in i may itself affect the curvature of the intertemporal welfare function

in the direction of k and i (i.e. ∂2pj

∂sk∂si
= ∂

∂si
Vsjsk). If the effect of increasing asset i is to

increase the concavity in the direction of increases in j and k ( ∂2pj

∂sk∂si
< 0) then the existence of

positive correlation between the latter two assets results in a compensating reduction in the

asset price. This creates addition “self insurance” opportunities from portfolio diversification.

Some insight on the numerator terms involving covariances can be gleaned by realizing

that the covariance between innovations in sj (the residual of changes in sj after the deter-

ministic drift µj(s,x(s)) is differenced away) and innovations in sk can be viewed as their

rescaled relationship in expectation. Specifically, if the conditional expectation of sj and sk is

linear4 E[dsj|dsk] = βdsk, then it is well known that β = Ωjk

σ2k . In other words, the covariance

terms in (11) reflect the expected marginal effect of dsk on dsj such that the risk terms in the

multivariate asset case account for systematic (linear) cross-effects between perturbations in

stocks in a way that is analogous to how the previous cross-terms in the numerator account

4Linearity of the conditional mean follows directly from the joint normality assumption for Ito processes.
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for capital gains through deterministic relationships via price and cross-stock effects.

Finally, it is noteworthy that the effects of stochasticity disappear from (11) when two

conditions hold: 1) when all second moments are constant regardless of the stock levels, and

2) the intertemporal welfare function, V , is quadratic such that investments have no effect

on its curvature. However, since the intertemporal welfare function inherits the properties

of the instantaneous benefits function, the economic program, and biophysical dynamics in

a complex manner, the latter property is difficult to verify ex ante.

3 Numerical approximation

Given a complete deterministic bioeconomic model of a social-ecological system it is possible,

at least in principle, to obtain approximate shadow values for a given stock at a given initial

state vector by perturbing the desired natural capital stock and calculating the change in

the net present value of benefits flows over the indefinite future. While straightforward,

this approach is computationally intensive and cumbersome for forecasting or backcasting

the wealth dynamics of a system and may be inappropriate in stochastic settings. Fenichel,

Abbott, and Yun (2018) and Yun et al. (2017) describe how the HJB equation can be

combined with functional approximation approaches frequently used in numerical dynamic

programming to approximate the entire shadow price function over a closed domain of capital

stocks. For the deterministic, multi-asset case they advocate approximating V (s(t)) using

the HJB equation (analogous to (10)), replacing V (s(t)) on the LHS of the equation with a

weighted sum of the tensor product of Chebychev basis functions in the stock vector s(t) and

replacing the partial derivatives of the value function on the RHS with the partial derivatives

of this approximation. The coefficients that determine the weightings on the basis functions

can be solved analytically and are chosen (in a system with as many approximation points

as coefficients) to make the LHS and RHS of the approximated HJB equation hold with
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equality.5

This value (intertemporal welfare) function approximation technique can be adapted

with relatively minor changes to the stochastic diffusion case. First, define the bounded

approximation interval for each state variable. Then choose M evaluation points within this

interval for each of the S capital stocks and then calculate W (s (t) , x (s (t))), µ (s,x (s))

and Ω(s) at each point.6 The univariate node coordinates are then permuted to yield MS

grid points. We define φi as the M × (qi + 1) basis matrix of qith degree for state variable

i. This is a matrix of qi + 1 basis functions - Chebyshev polynomials of ascending degree

in our case - evaluated at the M evaluation points. To approximate over the bounded

domain in RS we find the tensor product across all dimensions (i.e. allow for full interactions

across the univariate basis functions) to form an MS ×
∏S

i=1 (qi + 1) basis matrix: Φ (S) =

φN ⊗ φN−1⊗ . . .⊗ φ1 where S is the MS × S matrix of evaluation points (i.e. all grid nodes

of M evaluation points for all S state variables). We can now define our approximation to

the intertemporal welfare function V (Sm) ≈ Φm (S)β where m indexes the MS distinct

capital stock vectors (i.e. the individual evaluation points in the S-dimensional grid) and

Sm is the mth row of S. Φm (S) is the mth row of Φ (S), and β is a
∏S

i=1 (qi + 1) × 1

vector of unknown approximation coefficients. Using the fact that ∂V (Sm)
∂si

≈
(
∂Φm(S)
∂si

)
β

and ∂2V (Sm)
∂si∂sj

≈
(
∂2Φm(S)
∂si∂sj

)
β we can replace the HJB equation in (10) with the following

approximation:

δΦm (S)β = W (Sm) +

[
S∑
j=1

diag(µj (Sm))

(
∂Φm(S)

∂sj

)
β

+
1

2

S∑
j=1

S∑
k=1

diag(Ωjk(Sm))

(
∂2Φm(S)

∂sj∂sk

)
β

] (12)

5In some cases it may be desirable to utilize more approximation nodes than the number of coefficients
- an overdetermined system. In this case, the coefficients can be chosen to minimize the sum of squared
deviations between the LHS and RHS of the approximation. The analytical expression for this solution is
analogous to ordinary least squares (Fenichel, Abbott, and Yun, 2018).

6In many cases the evaluation nodes are found by finding the M roots of a unidimensional Chebyshev
polynomial on the bounded approximation range for each state variable. However, care must be taken so
that the nodes are laid out in a way that the system dynamics do not leave the approximating domain in
expectation.
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Collecting terms involving β yields:

[
δΦm (S)−

S∑
j=1

diag(µj (Sm))

(
∂Φm(S)

∂sj

)
− 1

2

S∑
j=1

S∑
k=1

diag(Ωjk(Sm))

(
∂2Φm(S)

∂sj∂sk

)]
β

= Ψm(S)β = W (Sm)

Stacking these MS vector equations results in the equation Ψ(S)β = W (S). If MS =∏S
i=1 (qi + 1) (i.e. the number of approximation points equals the number of unknown ap-

proximation coefficients) then the approximation coefficients can be calculated in a straight-

foward way through matrix inversion. Alternatively, if MS >
∏S

i=1 (qi + 1) then the β can

be found using least squares.

β = (Ψ(S)′Ψ(S))
−1

Ψ(S)′W (S) (13)

After obtaining the approximation Φ(S) it is straightforward to find the shadow values

of any given capital stock by taking its partial derivative.

Fenichel, Abbott, and Yun (2018) discuss the importance of determining the domain

of approximation. They show that in multi-dimensional systems the system dynamics to

can lead outside the approximation domain, which hinders the ability to recover shadow

prices. They argue that it is important to make sure the approximation domain is sufficient

to include dynamic from any stock size for which a shadow price is desired. In the single

stock deterministic case this is never an issue so long as the system has attractors that

interior to the approximation domain. However, this property does not extend to stochastic

dynamics. This is because a shock at the edge of the approximation domain could lead

the system outside the approximation domain for a non-trivial period of time. Therefore,

extra attention is needed to enlarge the approximation domain when system dynamics are

stochastic.

14



4 Single stock example

The single-species example focuses on understanding the circumstances in which incorporat-

ing stochastic capital dynamics is important for assessing the value of natural capital and

wealth-based sustainability. In particular we examine the extent to which the biophysical

stochastic dynamics coupled with the economic program may yield substantially different

shadow prices from the deterministic case and the mechanisms for this divergence through

either the ‘endogenous risk’ or ‘endogenous risk aversion’ effects discussed above.

We extend the deterministic model for Gulf of Mexico reef fish presented in Fenichel and

Abbott (2014) and originally developed by Zhang and Smith (2011) and Zhang (2011) to

the stochastic case. We augment the logistic stock dynamics with an additive geometric

Brownian motion (GBM) noise term. Geometric Brownian motion allows the standard

deviation of stock perturbations to scale linearly with the stock level and is consistent with

the assumptions of log-normal disturbances frequently used in population dynamic modeling

and fisheries stock assessment. Utilizing historic assessed biomass data from the fishery we

calibrate σ = 0.067; therefore the standard deviation from the deterministic drift given by

the logistic growth equation with harvest is approximately 6.7 percent of the stock level.

The stock dynamics are

ds =

(
0.3847s(t)

(
1− s(t)

3.59× 108

)
− h (x (s (t)) , s (t))

)
dt+ 0.067s(t)dZ(t) (14)

The economic program, the relationship linking stock status (in lbs.) and effort (in crew-

days) in the fishery, is provided by a power rule, x(s) = ysγ, where γ = 0.7882 and y = 0.157.

We assume that the valuation of income flows in the fishery is directly expressed in terms of

monetary profits, with price-taking firms and costs that are linear in effort: W = mh− cx,

with m = $2.70/lb., c = $153/crew-day. The production function for harvests is of a

generalized Schaefer form h = qsx (s)α, with q = 3.17 × 10−4 and α = 0.544. Note that

while both harvests and costs are linear in the fish stock for a fixed allocation of effort x,
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W (s) is actually a strictly convex function of the stock once the endogenous feedback from

the stock level to harvest behavior x(s) is incorporated.

4.1 The effects of risk, σ

Figure 1 provides stochastic simulations of stock paths originating from the steady state

biomass and harvest under increasing levels of stochasticity. The level of noise introduced

by stochasticity in the base case (Fig. 1a) is already substantial and reminiscent of the noise

in many ecological projections. The signal to noise ratio at the deterministic equilibrium

stock is 3.2. Note that, while extinction is technically impossible in continuous time using

the current economic program and geometric Brownian motion, our numerical simulations

nevertheless show that the number of paths that tend to a numerically zero level increase

dramatically with increases in σ. Indeed, all paths reach numerical extinction within 20

periods when σ = 1. This suggests that levels of σ of 0.5 or 1 are likely inconsistent with

the dynamics of most real-world species.

Figure 2 plots the approximated value function across the varying levels of σ in compar-

ison to the deterministic case. As the HJB equation in Eq. (6) shows, the value function in

the stochastic case includes an additional risk term that serves, in part, to shift the value

function. In the current case, the value function is concave in s (i.e. the shadow price

curve is downward-sloping) so that increasing σ in the GBM has the effect of reducing the

expected net present value at any given stock level. This adjustment is very small for the

empirically-justified level of stochasticity in our system (σ = .067) - suggesting that the

economic program is fairly robust to the level of stochasticity in the system by maintaining

stock levels in a relatively insensitive range of the profit function. However, higher levels

of risk lead to far less controllable systems, resulting in dramatic devaluations of the total

‘ecosystem portfolio’ by a factor of 1/2 to 2/3.

While the vertical shifts in the value function are the most obvious effect of varying σ

there are other higher-order effects on the shape of the value function. The shadow prices
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(a) σ = .067 (b) σ = .2

(c) σ = .5 (d) σ = 1

Figure 1: Stochastic simulations of stock dynamics over a range of values for σ. Note that
the values for σ = 1 exceed the range of the graph on a number of runs.
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Figure 2: The value function for different values of σ

(i.e. the derivative of the value function) are also changing, as reflected by the fact that the

curves in Fig. 2 are not merely vertical displacements of each other. As shown in Eq. (7),

these effects on the shadow price can occur either through endogenous risk or endogenous

curvature of the value function. Figure 3 shows the shadow price functions, essentially the

revealed ‘demand functions’ for natural capital, across the four risk levels. Interestingly, the

price curve is effectively unchanged by the introduction of risk at the baseline level σ = .067.

Thus, while risk devalues the stock in total (albeit very mildly) it has no appreciable effect

on its marginal valuation.

This inelasticity of shadow prices to the level of risk changes at higher risk levels. Figure

3 demonstrates that as stochasticity in capital dynamics increases, the shadow price becomes

more homogeneous across stock levels, reflecting a reduction in the curvature of the underly-

ing value function. Indeed, the flattening of the shadow price curves with increased σ in Fig.

3 is evidenced by the increasing linearity of the value functions in Fig. 2. The homogeniza-
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tion of shadow prices across stock levels occurs because as σ increases the mapping between

a given stock level and the subsequent trajectory of harvests and fishery profits becomes in-

creasingly “fuzzy” and less bound to the deterministic trajectories of the deterministic case.

In this case the shadow value of investing in an additional unit of natural capital at a current

stock s(t) reflects the probability-weighted payoffs of all potential trajectories conditional on

s(t). As σ increases the stock dynamics become more and more like a pure lottery, so that

the conditioning on initial values becomes less and less important.

While the “homogenization effect” of risk primarily acts on the slope of the shadow price

function, these changes are also accompanied by a general downward shift in the level of

the shadow price curves - particularly for values of σ above 0.2. This “devaluation effect”

suggests that an increase in stochasticity reduces the marginal value of stock investments at

all levels. This occurs because the increasing role of noise in the system dynamics undermines

the marginal value of holding capital. The possibility of either catastrophe or windfall are

increasingly exogenous. The devaluation effect is most dramatic at low stock sizes since

high levels of volatility, e.g., σ = 1.0 (Fig 3) lead to a high probability of near-extinction in

the short to medium term whereas larger stocks are unlikely to be visited. Therefore, large

values of σ work like increasing the discount rate, since the probability of have stock at all

in the medium to longterm tends towards zero.

While we have demonstrated the potential for serious consequences of stochasticity for

natural capital valuation, we have done so under arguably unrealistic assumptions. Indeed,

the effects of risk on the shadow price in the previous example come almost entirely through

the endogenous risk effect - where large values of σ in the GBM lead to outsized marginal

effects of s on stock volatility. The third derivatives of the value function that figure in

the ‘endogenous risk aversion’ effect are negligible and become even more so as the value

function becomes increasingly linearized at higher levels of risk. The negligible effects of

risk on the value function at the empirically measured level σ = .067 suggests that there is

precious little reason to incorporate stochasticity in capital dynamics when valuing natural
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Figure 3: Shadow price for the Gulf of Mexico reef stock with increasing values of the volatility
parameter σ.

capital in this particular system.

4.2 The effect of risk aversion in income flows

The previous section illustrates how the combination of biophysical dynamics, production

functions, and feedbacks in the behavioral control rules between capital stocks and human

behavior can result in a non-linear value function over stocks. This non-linearity, coupled

with stock-dependent variability in natural capital stocks, can make risk relevant for asset

pricing even when the underlying flows of income are valued in a risk-neutral manner. The

role of risk in the valuation of natural assets is therefore highly contingent on the totality of

the features of the coupled social-ecological system.

Nevertheless, given this complexity, how does the explicit introduction of risk aversion

over flows of income affect the role of risk in the pricing of natural capital? To investigate
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Figure 4: Logarithmic changes in value function for a perturbation of risk to σ = 0.5 relative to
the baseline risk-free case for varying levels of risk aversion θ.

this question we replace W (s) with its risk-adjusted form as a CRRA utility function in

income flows.

W risk =
W (s)1−θ − 1

1− θ

for θ 6= 1. Note that larger positive values of θ imply greater aversion to variability in income

flows.

Direct comparisons of value functions or shadow values across different levels of θ are

not meaningful since their units are defined in terms of W and are therefore changing as θ

changes. A more sensible comparison is to examine how the value function and shadow price

functions change in relative terms in response to a perturbation in the level of risk for different

levels of risk aversion. Figures 4 and 5 presents the change in the value function and shadow

prices of an increase in risk to σ = 0.5 relative to a baseline deterministic (σ = 0) scenario.

The most immediate finding from Fig. 5 is that there is not a uniform mapping between
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Figure 5: Logarithmic changes in shadow prices for a perturbation of risk to σ = 0.5 relative to
the baseline risk-free case for varying levels of risk aversion θ.

the level of risk aversion to income flows and the relative change in the value function from

the introduction of risk. While the risk neutral case consistently has the smallest discount,

the next smallest reduction is for the most risk averse case with θ = 0.7 while the largest

discount is consistently seen for an intermediate level of risk aversion (θ = 0.5).

Turning attention to the relative changes in shadow prices (Fig. 5), the picture remains

complex. For the most part shadow prices all decline with the introduction of risk. However,

this is not the case for the highest examined level of risk aversion (θ = 0.7), which actually

shows increases in shadow prices for moderate to large stock sizes. The relative ranking of

the risk discounts/premia across risk aversion levels are not consistent across stock sizes.

The exact cause of these complex findings remains a subject of research. Nevertheless,

we believe that the explanation may relate to the fact that increases in stochasticity result

in broader probabilistic mixing of dynamic trajectories of harvest, stocks and profits. This
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means that the value function, as the expected net present value of profits from these trajec-

tories, probabilistically weights information about realized benefits flows W across the entire

state space. Given that the value function under stochasticity conveys this global informa-

tion at each ‘local’ value of the stock, the lack of crisp results is perhaps not surprising. At

the very least, our results suggest that the mapping between static risk aversion to flows of

income from capital stocks and the risk adjustment to value functions and shadow prices

under non-optimized economic programs is not simple.

5 Conclusion

Uncertainty is a driving concern in natural resource economics and real-world resource man-

agement. Managers face an array of distinct risks, including measurement error and pro-

cess error in terms of the future dynamics of natural stocks and human depletion of these

stocks (i.e. uncertainty in the economic program). There is an enormous literature applying

stochastic control theory to understanding the optimal management of resources (e.g., Sethi

et al., 2005). There is also a growing literature applying modern portfolio theory to design

optimal portfolios of harvested species or portfolios of spatial conservation across landscapes

or seascapes according to the social planner’s risk-return preferences (e.g., Ando and Mal-

lory, 2012). However, the literature has devoted little or no attention to the question of how

process error should be incorporated into the valuation of individual natural capital stocks

or portfolios of these stocks under real world, non-optimized conditions. Addressing these

challenges is critical for developing wealth-based metrics of sustainable development and

sustainable resource management that treat natural resources as real assets that are linked

both through their deterministic interactions and their stochastic properties.

We show how uncertainty over the future dynamics of natural resources can be rigor-

ously incorporated into the shadow prices of assets at risk. While the forecast of resource

trajectories can only be described in distributional terms, we show how this uncertainty can
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nevertheless be collapsed into a single shadow price at any given stock level. This finding

parallels financial markets that yield a price for traded assets conditional on the information-

contingent forecasts in the minds of traders - even as the flow of dividends from these assets

is uncertain.

In the case of single assets, we find that risk enters into the valuation of natural capital

in two ways. The first, an “endogenous risk” effect, reflects how capital investment affects

its variability. This effect is valued through the curvature of the value function. It reflects a

degrees a self protection. The second, an “endogenous risk aversion” effect, reflects how these

same investments affect the valuation of the risk by moving from regions of the value function

with different degrees of curvature, which suggest a self-insurance feature. Importantly, the

valuation of risk depends critically on the second and third derivatives of the value function,

which depends on the totality of the properties of the utility function valuing income flows

from capital stocks, the shape of the growth functions of capital stocks, and the feedback

rules between capital stocks and human behavior embodied in the economic program. In

other words, the extent of “intertemporal risk aversion” or prudence - the curvature and

change in curvature of the value function with respect to stocks of capital - is not “baked in”

solely through the curvature of the utility function evaluating income flows (i.e. ecosystem

services) from natural capital. Rather, it is a global property of the coupled human-natural

system in question, including its management. Even in the case of a single natural asset, the

feedback rule employed to respond to changes in the resource stock can affect the level of

objective risk faced and the sensitivity of intertemporal welfare to that risk. In other words,

resource management has a role to play in shaping the risk discount or premium. Indeed, this

is logic behind the Shogren and Crocker’s endogenous risk framework and broader literature

on self-protection, self-insurance, and market based insurance (Ehlich and Becker 1972).

This logic carries over to the multi-asset case, but in an even richer form. Investments in

a given capital stock now have the potential to affect both the variances and the covariances

of other capital stocks in the portfolio and the multi-dimensional curvature of the value
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function. These “portfolio effects” elevate the role of the economic program even further.

The feedback rule between the vector of capital stocks and human actions on these stocks

serves as a portfolio rebalancing rule that influences the overall value of the portfolio. The

valuation approach we have outlined provide a metric for understanding how alternative

portfolio management strategies influence the valuation of individual capital stocks and the

sustainability of management itself - as reflected in forward simulations of inclusive wealth

or the value function.

Uncertainty is a driving concern in natural resource planning and often a motivator in

sustainability (and resilience) discussions. Yet, sustainability metrics have only secondarily

appeared in work on wealth based metrics for sustainability (Walker 2010). Our analysis of

stochasticity of the single stock case reveal an important, but counterintuitive, role for risk

in sustainability assessment. A common, but incorrect, critic of wealth-based sustainability

approaches is that they are purely weak sustainability and fail to capture limits to substi-

tution or important complementaries Fenichel, Abbott, and Yun (2018). Yun et al. (2017)

clearly show this is not the case in deterministic systems because shadow prices change as the

start of the system changes to reflect limits to substitution of complementarity relationships.

But, here we show that increasing volatility flattens shadow price curves. If covariances

are weak, but there is substantial risk in a system, this could lead to near constant shadow

prices, which would endogenously lead to a seemingly weak sustainability index, even though

the pricing mechanism could have created a wealth based sustainability metric that could

have accounted for limits to substitution. The reason is that stochasticity swamps structural

connections, which means it also swamps the complementaries that might favor conservation

of all stocks and a seemingly strong sustainability index.

We have focused on analyzing stochasticity within the stock dynamics. Science often

focuses on this form of uncertainty. However, there are other forms of uncertainty and

stochasticity that may be equally salient. While we have focused on correlated diffusions in

continuous time - which are inherently continuous in nature - there is also the possibility of
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resource dynamics experiencing discontinuous Poisson shocks or falling into an alternative

basin of attraction. While these forms of risk fall outside the class of correlated diffusions

considered here, we conjecture that they can nevertheless be handled in a relatively straight-

forward manner through extensions of analogues in the literature (Walker et al., 2010; Reed

and Heras, 1992).

Other forms of stochasticity may be more difficult to conceptualize and measure. For

example, the economic program could itself be uncertain or subject to unpredictable jump

processes. Political shift could cause the economic program to‘ “reorganize” with little

rhyme or reason. Less dramatic could be sudden breaks in the economic program that

materialize when novel states of the world are encountered. For example, when stocks fall

below an arbitrary threshold society may adopt a different management program. This is

not fully separable from the potential stochastic political events. While it may be possible

conceptually to translate these profound uncertainties into the distributional language of

risk, this process may be infeasible in practice. These “unknown unknowns” will continue to

make consensus on realized shadow prices challenging. Nevertheless, realized shadow prices

play an important role in sustainability assessment. They help re-frame the resources that

society is currently making and reveal the implied scarcity of societal assets given human

actions.
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