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Abstract

This paper compares the performance of three multi-award reverse auction mechanisms

using lab experiment. The first mechanism is called the Uniform Price Reverse (UPR) auc-

tion, where each winning bidder is paid the lowest rejected bid. The second mechanism

is called the First Price Reverse (FPR) auction, where winning bidders are paid their sub-

mitted bids. The third mechanism is called the Generalized Second Price Reverse (GSPR)

auction, where each winning bidder is paid the bid that is immediately higher. Theoreti-

cally, I derive the equilibrium bidding strategy for each auction mechanism and show that

a symmetric equilibrium strategy may not exist under the GSPR auction. Empirically, lab

experiment results show that UPR and GSPR auctions lead to a higher efficiency level com-

pared to FPR, while UPR auction yields the lowest auctioneer surplus. From a valuation

perspective, UPR and GSPR auctions are preferred to FPR auction.
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1 Introduction

Auctions are considered as effectiveness ways to allocate scare resources (McAfee and McMil-

lan, 1987) under a defined set of rules. Popular auction items include United States Treasure

bills, artworks, antiques, mineral rights and others. In an ordinary (or “forwarding”) auction,

buyers compete to purchase goods or services by offering higher prices to the sellers. In the

reverse auction, the buyers and sellers’ roles are reversed and sellers compete to sell goods or

service by offering lower prices. Buyers usually award the contract to sellers with the lowest

prices. The reverse auctions (or sometimes called the “procurement auction”) are commonly

used by commercial and government agencies to reduce the cost incurred to achieve a given

target or to maximize benefits under a finite budget. Recently, reverse auction has been used

by the Federal Communications Commission (FCC) to relinquish broadcast spectrum rights

(Cramton et al., 2015).

Two general auction approaches have been used in reverse auctions. The first approach is

called the Uniform Price Reverse (UPR) auction, where all winning bidders are compensated

with a same price that is determined by the buyer’s budget or a pre-defined objective. The

second approach is the First Price Reverse (FPR) auction, or the Discriminatory auction, where

each winning bidder receives a compensation equals to her submitted bid. The performance

of Uniform Price and First Price auctions have been studied extensively in both ordinary and

reverse auctions under various contexts (Bower andBunn, 2001; Cason andGangadharan, 2004,

2005; Holt Jr, 1980). Theoretically, UPR auction is preferred to FPR auction from a valuation

perspective as individuals have the incentive to reveal their true typeswhen allwinners are paid

the same price, while FPR auction is shown to have a better overall market performance when

the buyer is facing a budget constraint (Cason and Gangadharan, 2005). In a reverse auction

setting, bidders significantly bid higher than their true cost to receive information rents when

FPR auction is used.

In reverse auctions, the buyer may purchase multiple items at the lowest prices, which de-

parts from an ordinary auctionwhere usually one item is auctioned and the highest bidderwins

the auction. For a single item auction, the First Price (Cox et al., 1988; Harrison, 1989; Laffont

et al., 1995; Riley and Samuelson, 1981) and Second Price (Graham and Marshall, 1987) auc-

tions are the most widely used auction formats. For multiple items auctions, common auction
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approaches include the First Price auction (Cox et al., 1984), Generalized Second Price auction

(Che et al., 2017; Edelman et al., 2007; Gomes and Sweeney, 2014; Jeziorski and Segal, 2015; Var-

ian, 2009, 2007), Uniform Price auction and the VCG auctions (Cason and Gangadharan, 2004,

2005; Fukuda et al., 2013). In the literature, equilibrium solution concepts are mostly based

on the locally envy free equilibrium (Edelman et al., 2007; Fukuda et al., 2013) and Bayesian

Nash equilibrium (Gomes and Sweeney, 2014) for the Generalized Second Price auction. Lab

experiment is a primary tool used to compare auction performances under the controlled envi-

ronment. Che et al. (2017), Fukuda et al. (2013), and McLaughlin and Friedman (2016) exper-

imentally test different ordinary auction mechanisms inspired by the sponsored search engine

advertisement auctions including the Generalized Second Pricing auction. There are few stud-

ies investigate the performance of auction mechanisms when applied in reverse auctions. In

this paper, I study a novel reverse auction mechanism called the Generalized Second Price Re-

verse (GSPR) auction in which each bidder is compensatedwith a price that equals the bid that

is immediately higher. For example, an individual with the lowest bid will get compensated

with the second lowest bid, the subject with the second lowest bid will get compensated with

the third lowest bid, and so on. The GSPR auction is the Generalized Second Price auction

applied in a reverse auction context and has not been studied theoretically or empirically.

Gomes and Sweeney (2014) characterizes the Bayesian Nash equilibrium in a Generalized

Second Price auction under the context of auctioning advertising positions in the search en-

gines. Under the sponsored advertising position auctions, each position has a different click-

through rate. They find that if the click-through rates are the same, it is possible that an efficient

Bayesian Nash equilibrium does not exist, and more broadly, a symmetric Bayesian Nash equi-

librium may not exist as well. In this paper, the Generalized Second Price auction is studied in

a reverse auction context with no click-rate variations for different positions. I derive a generic

solution for the GSPR auction and demonstrate that a Bayesian Nash equilibriummay not exist

under certain circumstances. The GSPR auction is compared with two standard multi-award

reverse auction mechanisms including the UPR auction and FPR auction.

A fundamental challenge in auction literature is to balance the tradeoffs between incentive

compatibility and the auctioneer’s surplus. In general, the bidders are often compensated with

an excessive amount of surplus in order for them to reveal their true types at the cost of the
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auctioneer’s surplus, such as in the UPR auction. However, the auctioneer can also discrim-

inate bidders by using the FPR auction where the bidders have no incentive to reveal their

true types. As a result, the auctioneer is often unable to get a precise estimate of the bidders’

true cost without specific assumptions or structural estimates. This paper demonstrates that

the GSPR auction can be an ideal candidate for multi-award reverse auctions since under the

GSPR auction, individuals’ bids are close to their true cost and the auctioneer still obtains a

high level of surplus similar to the FPR auction,

This paper also compares the social efficiency and the allocation of social surplus across the

three reverse auction mechanisms. The allocation of social surplus can substantially influence

the bidders’ incentives and result in different economic and social impactswhen reverse auction

is used to achieve a social objective. For example, in an environmental conservation context,

landowners (e.g., farmers or wetland managers) may receive too many subsidies for enrolling

in better environmental management practices when a UPR auction is used to decide the distri-

bution of the conservation fund, because the lowest cost landowner receives the same amount

of compensation as themarginal landowner. Even though theUPR auction is considered incen-

tive compatible and the landowners will, in principle, reveal their true opportunity cost, such

an approach is far from efficient from a conservation perspective as some low cost landowners

exhaust a considerable amount of conservation budget by receiving a huge surplus from a uni-

form compensation as they are paidmuch higher than the true cost. Alternatively, even though

FPR auction is shown to perform better than UPR (Cason and Gangadharan, 2005), strategic

bidding incentives prevent the auctioneer from getting a good estimate of the landowners’ true

opportunity cost, which serves as the basis for a robust benefit-cost analysis or designing con-

servation polices. In this paper, lab experiment results indicate that theGSPRmayovercome the

surplus allocation and incentive issues and, empirically, perform well both from the efficiency

and the valuation perspectives. Though this study is motivated by the information asymmetry

issue and optimizing incentive payment in various environmental conservation programs (Fer-

raro, 2008), the GSPR auction can be applied to other types of reverse or procurement auctions

when there are multiple winners from one auction outcome.

This paper provides the first evidence on the performance of the GSPR auction, which is

compared with the more commonly used UPR and FPR auctions. Experimental results show
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that FPR auction leads to the highest bids on average, then GSPR auction, and the UPR auction

leads to the lowest average bid. The bidding prices are similar under UPR and GSPR auctions.

The sellers acquire a significantly higher surplus in the UPR auction, and acquire the lowest

surplus in the FPR auction. In terms of social efficiency, the UPR and GSPR auctions achieve

a very high social efficiency level while the FPR auction performs significantly worse than the

other two counterparts.

The remainder of the paper is organized as the follows. In Section 2, I set up the auction

framework and present the theoretical benchmarks based on the Bayesian Nash equilibrium

solution concept. In Section 3, I describe the experiment procedure and summary statistics. In

Section 4, I present the experiment results focusing on individual bidding behaviors and social

efficiency. Section 5 concludes the paper.

2 Theoretical Remarks

This section discusses theoretical property of the three reverse auction mechanisms. The theo-

retical analyses of Uniform and First Price reverse auctions are mainly based on Vickrey (1962),

Harris and Raviv (1981) and Cox et al. (1984) while the analyses of the Second Price Reverse

auction are constructed following the conceptual framework of Borgers et al. (2007), Edelman

et al. (2007) and Varian (2007), and the deriviation of Bayesian Nash equilibrium is based on

Gomes and Sweeney (2014).

2.1 Uniform Price Reverse Auction

Assume there are N risk-neutral bidders competing for a total of M homogenous contracts

(M < N , M ≥ 2, N = 1, 2, ..., N) and each bidder can be awarded at most one contract. In

the UPR auction, each bidder submits a bid for a single unit and theM lowest bidders will be

awarded with the contract at the price of the lowest rejected bid, or theM +1th lowest bid. The

winning price, paid by the auctioneer to the bidder for completing the contract, is denoted as

pi. Let ci be the bidder i’s cost for completing the contract and assume each ci is independently

drawn from a distribution with a probability density function f(·) and cumulative probability

distribution functionF (·), with the support on [v, v̄]. Let bi = s(ci) be the bidder i’s bid function.
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I maintain the standard assumptions that the bidding function s(·) is increasing, concave and

differentiable. If a bid bi is accepted, bidder i’s monetary payoff is the winning price pi (i.e.,

the lowest rejected bid) minus cost ci. When a bid is not accepted, in this case, if the bid bi not

one of the lowestM bids, bidder i’s payoff is zero. Let s−1(·) denote the inverse of the bidding

function s(·), thus, s−1(s(ci)) = s−1(bi) = ci.1

Since M lowest bidders are chosen as the winners, the probability that a bid bi wins the

auction is denoted by G(s−1(bi)), which equals the probability at most M − 1 of the values

drawn by other bidders are less than s−1(bi). As a result, following Harris and Raviv (1981),

the calculated probability of being one of the lowest bids equals the probability s−1(bi) below

theMth order statistics among the other N − 1 bids. The probability of winning is

Pr(bi) = Pr(bi < y) = Pr(s−1(bi) < c(M)) = 1− Pr(s−1(bi) > c(M)), (1)

where y is theM lowest bid of the other N − 1 bidders, c(M) is theM order statistics among

the N − 1 private cost of other bidders. The probablity of winning with a cost c is

G(c) =
∑M

k=1

 N − 1

k − 1

 (1− F (c))N−k(F (c))k−1. (2)

Therefore, individual i’ expected profit is

π(ci) = G(s−1(bi))(pi − ci), (3)

where pi is the lowest rejected bid and pi = b(M+1), b(k) is the kth lowest bids and G(·) is cal-

culated based on equation (2). According to equation (3), if one bids higher than the private

cost ci, the probability of winning decreases while the profit conditional on winning is still the

same. If one bids lower than the private cost, when bi < ci < pi, the bidder still wins the bid

with the same profit; if bi < pi < ci, the bidder can underbid to to win the auction but will

result in a negative profit; if pi < bi < ci, the bidder will lose the bid. Therefore, under the UPR

auction with multiple awards, an equilibrium bidding strategy is (after dropping subscript i)

sUPR(c) = c. (4)
1I also assume a random tie breaking rule in case there are multiple bids end at the same price.
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2.2 First Price Reverse Auction

Under the FPR auction with multiple awards, individual i’ profit is

π(ci) = G(s−1(bi))(pi − ci) = G(s−1(bi))(bi − ci), (5)

where the winning probability is also determined by equation (2). The bidder i chooses bi to

maximize expected profit π(ci). The first order condition implies

G(s−1(bi))− (bi − ci)g(s−1(bi))
1

s′(s−1(bi))
= 0. (6)

A symmetric Nash equilibrium requires that bi = b(ci) for all i, therefore, equation (6) can be

simplified as

G(ci)− (s(ci)− ci)g(ci)
1

s′(ci)
= 0. (7)

Rearrange equation (7), we have

s′ = (s(ci)− ci)
g(ci)

G(ci)
. (8)

Therefore, the equilibrium bidding strategy sFPR(ci) is determined by equation (8) and can be

expressed as (after dropping subscript i)

sFRP (c) = c+

∫ c̄

c
G(c̃)dc̃

G(c)
, (9)

which is higher than sUPR almost everywhere except at c̄, where sFRP (c̄) = sURP (c̄) = c̄.

2.3 Generalized Second Price Reverse Auction

Under the GSPR auction, sinceM lowest bidders are chosen as the winners, the winning price

is a function of the ranks. The probability of each rank needs to be calculated separately. To

proceed, the probability that a bid bi being the lowest is denoted by probability G1(s−1(bi)),

which is also the probability that zero of the values drawn by other bidders are less than s−1(bi).

Similarly, the probability that a bid bi is ranked no higher than the second lowest (including

the lowest and the second lowest position) is denoted by probability G2(s−1(bi)), which is also
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the probability that at most one of the values drawn by other bidders are less than s−1(bi). In

general, we use Gk(s−1) to denote the probability that at most k − 1 of values drawn by other

bidders are less than s−1(bi).

Thus, the probability of being the kth lowest bid equals

Prk(bi) = Pr(y(k−1) < bi < y(k)) (10)

when k > 1. When k = 1,

Pr1(bi) = Pr(bi < y(1))

= 1− Pr(s−1(bi) > c(1))
(11)

where y(k) is the kth lowest bid of the other N − 1 bidders, c(k) is the kth order statistics

among the N − 1 cost of other bidders. Therefore, in the GSPR auction with multiple awards,

bidder i’s expected profit function is

π(ci) =
M∑
k=1

Gk(ci)(b(k+1) − ci), (12)

where Gk(c) is

Gk(c) =

 N − 1

k − 1

 (1− F (c))N−k(F (c))k−1. (13)

Based on Edelman et al. (2007), it is easy to show that the GSPR auction is not incentive

compatible and truthful bidding is not an equilibrium strategy under complete information.

For example, assume there are five bidders with private cost profile {20, 17, 15, 10, 9}, if every-

one bids her true cost, then the bid profile is also {20, 17, 15, 10, 9}. In this case, the profit for

the lowest cost bidder (bidder 1) is π1 = b(2)− c1 = 10−9 = 1, the profit for the bidder with the

second lowest cost (bidder 2) is π2 = b(3)−c2 = 15−10 = 5. It is clear that bidder 1 can increase

her bid to 11 and receive a much higher profit. The new bid profile is {20, 17, 15, 11 , 10} and the

profit for two bidders are π1 = b(3)− c1 = 15− 9 = 6 and π2 = b(2)− c2 = 11− 10 = 1. Therefore,

there is incentive for low cost bidders to overbid in order to get a higher winning price under

complete information.

The profit function for the GSPR auction is quite complicated with incomplete information.
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Under the GSPR with multiple awards, the equilibrium bidding strategy sGSPR(ci) maximizes

profit equation (12). Note that past research has used the local envy-free Nash equilibrium

(LEFNE) to analyze the theoretical property of Generalized Second Price auction assuming

complete information (Edelman et al., 2007) and tests its predictions using lab experiment

method and computer simulations (Fukuda et al., 2013; Thompson and Leyton-Brown, 2017).

In this paper, I attempt to apply the more standard Bayesian Nash equilibrium solution to set

a common theoretical benchmark across all reverse auctions under incomplete information.

Thus, under the GSPR auction, the equilibrium strategy, if exists, should satisfy,

sGSPR(c) = c+
∑M

k=1 γs(c)
∫ c̄

c
(c+ s(c̃))(1− F (c̃))N−k−1f(c̃)dc̃. (14)

where

rs(c) =
(k−1)(N−k)

Gs(c)

F (c)(1−F (c))N−k−1∑M
t=1(N−t)Gt(c)

. (15)

See Appendix for step by step solutions. Below I solve the equilibrium strategy based on the

parameters in the experiment and set up a theoretical benchmark for data analysis.

2.4 Equilibrium Bidding Strategy

In the experiment, individual cost followes a uniform distribution on the interval [5, 20]. The

group size is 5 and there are two winning awards in each group. For the UPR auction, the

equilibrium bidding strategy is

sUPR(c) = c. (16)

For the FPR auction, the equilibrium bidding strategy is

sFRP (c) = c+

∫ 20

c
G(c̃)dc̃

G(c)
, (17)

where

G(c) =
∑2

k=1

 N − 1

k − 1

 (1− F (c))N−k(F (c))k−1 (18)
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As a result, the equilibrium bidding strategy can be calculated according equations (17) and

(18) for any bidder with a private cost c ∈ [5, 20]. Thus

sFPR(c) = c+
(20− c)(c+ 5)

5c
. (19)

For the GSPR auction, substitute N = 5 and M = 2 into equation (14). The equilibrium

strategy, if exists (i.e., sGSPR(c) is strictly increasing (Gomes and Sweeney, 2014)), satisfies

sGSPR(c) = c+
3
∫ c̄

c
(c+ s(c̃))(20− c̃)2dc̃

(20− c)2(c+ 5)
. (20)

In the Appendix, I show that a symmetric equilibrium does not exist under the GSPR auction.

Thus, empirical evidences are needed to assess the performance of GSPR.

5

10

15

20

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

UPR

FPR

Figure 1: Equilibrium Bidding Function under the UPR and FPR Auctions

3 Experiment Procedure

Eighteen experimental sessions were conducted at the University of Connecticut (UCONN). A

between subject design was implemented including six sessions of UPR auction, six sessions of

FPR auction and six sessions of GSPR auction. All subjects were recruited through the UCONN

Daily Digest, an online daily newsletter, where advertisements were placed to solicit volunteer

participants in economic experiments. Experimental tasks were not specified in the advertise-
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ments to minimize the concern of self-selection effects.

Selected students would receive a confirmation email indicating the economic experiment

involves multiple periods of decision making.2 All subjects included in the experiment ex-

pressed a willingness to participate in economic experiments and they need to reply to the

advertisement to be eligible for participation. Participants’ names and email addresses were

checked, before confirming their attendance, to ensure each subject participated only once in

this sequence of experiments. Experiments were conducted through networked computer ter-

minals using z-tree (Fischbacher, 2007). Inter-participant communications during the experi-

ment were prohibited and subjects could not observe each others’ choices.

Subjects who appeared on-time were told that they had already earned a $5 show-up fee.

Experiment’s instructions were read aloud while participants read along. Subjects were paid

in cash once the experiment was finished. One experimental session usually lasted about fifty

minutes yielding an average individual payoff around $16. There were ten subjects in each

experimental session. They were further divided into two groups of equal size in the reverse

auction game.

In the experiment, each treatment is replicated by six independent sessions. The between-

subject experimental design avoids potential order effects and correlated observations arising

from a within-subject design (Charness et al., 2012). A total of sixty subjects went through

the same treatment, which enables us to detect about one-half of standard deviation change in

the outcome variable with a power of 0.80 at a 0.05 significant level when only one outcome is

observed for each subject. In the implementation, each subject is asked to make decisions in

50 periods, with a different private cost and group composition in each period. Therefore, the

sample size and experimental design provides sufficient statistical power to detect treatment

differences.

In each session, subjects were randomly assigned to one of two groups and were asked to

make decisions. At the beginning of each decision period, subjects were told the number of

awards, the group size, as well as their private cost to complete the contract. As noted before,

private cost followed a uniform distribution on the interval [5, 20]. All the induced cost were

rounded to the nearest tenth. In the experiment, the distribution of private cost, the number

of awards and the number of subjects in each group were all public information. After each
2All experiment spots were reserved on a “first come, first serve” basis.
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decision period, subjects would receive a different private cost and the group memberships

were reshuffled. In each decision period, subjects were not allowed to bid more than $30.3 A

total of 180 subjects participated in the experiment, producing 9,000 individual-period level

observations, or 3,000 observations by 60 subjects in each treatment resulted from the between-

subject design.

Table 1 below shows that summary statistics regarding key experimental parameters and

outcomes. Results show that the FPR auction generates a significant higher bids compared to

UPR auction (Wilcoxon rank-sum test, z = 10.61, p < 0.001) and GSPR auction (Wilcoxon rank-

sum test, z = 10.97, p < 0.001), while there is no significant difference between the UPR auction

and GSPR auction (Wilcoxon rank-sum test, z = 0.110, p = 0.917). In the Appendix, Figure

A1 also plots the cumulative destiny function (CDF) for the bids distribution under the three

auctions. Results show that UPR and GSPR follow a similar CDF (two sample Kolmogorov-

Smirnov test, UPR and GSPR: p = 0.062; UPR and FPR: p < 0.001; FPR and GSPR: p < 0.001).

Table 1: Summary Statistics

Treatment Number of Cost Awarded Bids No. of
Sessions Distribution Units Mean (Median) Min (Max) Std. Dev. Obs.

UPR 6 U(5,20) 2 12.74 (12.6) 5(30) 4.46 3000
FPR 6 U(5,20) 2 13.97 (13.5) 5.1(30) 3.96 3000
GSPR 6 U(5,20) 2 12.73 (12.5) 5(30) 4.37 3000

4 Experiment Results

This section summarizes the experimental results based on the equilibrium predictions, indi-

vidual bidding strategy as well as the surplus and efficiency outcomes.

4.1 Equilibrium Predictions

In order to test the equilibrium predictions, I plot the bids against the equilibrium bidding

strategy for UPR and FPR auctions in Figure 2. The horizontal axis represents individual’s

private cost, ranging from 5 to 20; the vertical axis presents the bid level, ranging from 5 to 30,
3In the equilibrium, the maximum bid is 20 experimental dollars. Results show that, in the actual experiment,

this restriction only applies to situations where high cost individuals with a very low probability of winning oc-
casionally bid the maximum allowable amount.
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the maximum allowable bid in the experiment. Figure 2a shows that bid distribution and the

equilibrium bidding strategy under the UPR auction. The majority of bids concentrate around

the equilibrium biding strategy sUPR(c) = c. A total number of 1613 bids (53.76%) are within

a $0.1 interval of the actual cost, an additional of 743 bids (24.77%) are within an $1 of the

actual cost. Only 644 bids (21.47%) deviate the private cost by more than $1. During the last

25 periods, 786 bids (67.93%) are within a $0.1 interval of the actual cost, an additional of 397

bids (26.47%) are within an $1 of the actual cost. Overall, the equilibrium strategy provides a

good prediction regarding the bid distribution under the UPR auction.

Figure 2b shows that bid distribution and the equilibrium bidding strategy under the FPR

auction. Themajority of bids are below the equilibrium strategy, which seems to place an upper

bound on the bids. There are a very few bids (46 observations, or 1.53%) placed below one’s

private cost. Most of the underbids come from subjects with high private cost. Clearly, bidding

lower than one’s private cost is not an optimal strategy since one will either receive zero or

negative profits, which is strictlyworse off than just bidding one’s true cost. In Figure 2c, the bid

distribution under GSPR auction is similar to Figure 2a with the UPR auction. As noted before,

the Wilcoxon rank-sum test results show that the bids are not significantly different between

GSPR and FPR auctions (z = 0.110, p = 0.917). The experimental results are also consistent

with Cason and Gangadharan (2005) where they find the most offers (bids) are within 2% of

the cost, while the offers in the discriminative price auction (or FPR auction) are significantly

greater (about 8% more) than the cost.

Figure 3a and 3b plot the mean and the median bid at each cost level (from 5 to 20 at a 0.1

interval) based on the experiment data for all 50 decision periods. Our results show that the

mean and median bids are below the equilibrium bidding strategy for the UPR auction. The

mean andmean bids are very close under the GSPR andUPR auctions, except at low cost range,

where the mean and median are slightly higher under the GSPR auction. Interestingly, under

the FPR auction, the bid pattern matches better with the equilibrium strategy when there is

only one award. Figure 4 shows the mean bid for each cost level (from 5 to 20 at a 0.1 interval),

suggesting that the equilibrium strategy with only one award (e.g., only the lowest bid will

win) fits the experimental data noticeably better.4 This result may imply that individuals un-

derestimate the winning probability when more than one award is available and they may just
4In the Appendix, Figures A2, A3, A4 also show the median bid at each cost level for each experiment session.
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compete to win the auction as if there were only one award. The auctioneer, on the other hand,

could potentially take advantage of this behavioral bias and extract a higher surplus from the

bidders in a reverse auction.
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Figure 2: Equilibrium Strategies and Bids Distribution.
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Figure 3: Equilibrium Strategies, Bids Mean and Median.
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Figure 4: Equilibrium Strategies under First Price Reverse Auction

In general, experiment data reveals that the equilibrium strategy yields predictable patterns
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regarding individual bidding behaviors, even though under UPR auction, around 20% of bids

still deviate from individual cost bymore than $1. Also, the equilibrium bidding strategy seems

to yield an upper bound on the overall bidding pattern for the FPR auction. Under the GSPR

auction, when a BayesianNash equilibriumdoes not exist, the bid distribution seems to be close

to the distribution under the UPR auctionwhere the submitted bids are close to individual cost.

4.2 Individual Bidding Strategy

This section uses regression models to compare the differences across the three reverse auction

mechanisms. The regression analysis is based on a two-factor random effects model including

group and session specific factors (Marks and Croson, 1998). Specifically,

bit = Xitβ + µi + vt + εit, (21)

where bit represents the bidding amount for individual i in period t, with the two randomeffects

denoted by µi and vt, respectively, and Xit is a set of regressors that may include treatment

dummies, individual cost, aswell as their interaction effects. For comparison purpose, ordinary

least squares estimates are also included in the regression results.

Table 2 shows the regression results using data from all 50 experimental periods. Table 3

shows the regression results based on data only from the last 25 experimental periods. Com-

paring Tables 2 and 3, results are pretty consistent in terms of significance levels and coefficient

magnitudes. Therefore, I use the regression results based on the last 25 periods for interpreta-

tions.

Based onModels (3) and (4) in Tables 3, on average, individuals significantly increase their

bids in the FPR auction (βFPR = 1.846, p < 0.01) compared to the baseline treatment UPR

auction. Note that since the interaction term FPR × cost is negative significant (p < 0.01),

individual with a low private cost is more likely to bid a higher amount in the FPR than in the

UPR auction, which is consistent with the equilibrium strategy implied by equation (19). On

average, when the cost increase by $1, the difference betweenUPR and FPR reduces by $0.195 as

individuals balance the winning probability and expected profit under the FPR auction. Under

the GSPR auction, according to Model (3), individuals do not significantly increase their bids
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compared to the UPR auction (βGSPR = 0.345, p = 0.112). However, since the interaction term

GSPR× cost is also negative significant (p < 0.01), the difference between UPR and GSPR will

reduce by about $0.045 if the cost increases by $1.

Table 2: Regression Results, All Periods

(1) (2) (3) (4)
OLS OLS R.E. R.E.

cost 0.908∗∗∗ 0.971∗∗∗ 0.907∗∗∗ 0.971∗∗∗
(0.00436) (0.00744) (0.00434) (0.00742)

FPR 1.815∗∗∗ 3.658∗∗∗ 1.700∗∗∗ 3.519∗∗∗
(0.113) (0.173) (0.201) (0.239)

GSPR 0.452∗∗∗ 0.865∗∗∗ 0.242 0.799∗∗∗
(0.113) (0.172) (0.201) (0.239)

FPR×cost -0.147∗∗∗ -0.146∗∗∗
(0.0105) (0.0105)

GSPR×cost -0.0437∗∗∗ -0.0447∗∗∗
(0.0106) (0.0105)

Constant 0.978∗∗∗ 0.159 0.965∗∗∗ 0.174
(0.163) (0.178) (0.152) (0.169)

N 9000 9000 9000 9000
Adjusted R2 0.8352 0.8389 N/A N/A
log-likelihood N/A N/A -17984.4 -17883.6

Notes: Standard errors in parentheses. Results are based on the bids from all 50 periods. Regression models (1)
and (2) controls for session and period fixed effects. Models (3) and (4) are based on two-factor random effects
model. Adjusted R2 are calculated for models (1) and (2), log-likelihood statistics are calculated for model (3)
and (4). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

In the Appendix, I include a quadratic cost term to detect the possibility a non-linear rela-

tionship between the cost and the bids. Regression results in Table A1 implies a convex bidding

function under the FPR auction, which is consistent with the equilibrium predictions.

Winning Bids Figure 5 shows the box plot of the bid distribution for each rank (position)

under different reverse auction mechanisms using data from all 50 experimental periods. The

black-lined boxes cover the interquartile range, the line in the box presents the median of the

bids at each position, and the vertical line segments stretch to 5% and 95% percentile. Results

show the FPR auction leads to a highermedian bid compared toUPR andGSPR auctions at each

position. Note that under the FPR auction, there is a large proportion of bids higher than $20,

which may reflect subjects’ aggressive bidding choice in face of a small winning probability.

Table 4 shows the impacts of auction treatments on the bid distribution at each rank, based
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Table 3: Regression Results, Last 25 Periods

(1) (2) (3) (4)
OLS OLS R.E. R.E.

cost 0.906∗∗∗ 0.990∗∗∗ 0.906∗∗∗ 0.990∗∗∗
(0.00596) (0.0101) (0.00594) (0.0100)

FPR 1.830∗∗∗ 4.237∗∗∗ 1.846∗∗∗ 4.271∗∗∗
(0.154) (0.232) (0.214) (0.277)

GSPR 0.765∗∗∗ 1.084∗∗∗ 0.345 1.082∗∗∗
(0.154) (0.191) (0.214) (0.276)

FPR×cost -0.194∗∗∗ -0.195∗∗∗
(0.0143) (0.0142)

GSPR×cost -0.0573∗∗∗ -0.0588∗∗∗
(0.0143) (0.0142)

Constant 0.687∗∗∗ -0.303 0.868∗∗∗ -0.181
(0.179) (0.201) (0.168) (0.195)

N 4500 4500 4500 4500
Adjusted R2 0.8352 0.8389 N/A N/A
log-likelihood -8800.1 -8704.1 -8840.3 -8744.0

Notes: Standard errors in parentheses. Results are based on the bids from the last 25 periods. Regression Models
(1) and (2) controls for session and period fixed effects. Models (3) and (4) are based on two-factor random
effects model. AdjustedR2 are calculated for models (1) and (2), log-likelihood statistics are calculated for model
(3) and (4). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

on both OLS and random effects regressions using all 50 periods data. Results shows that the

FPR auction significantly increases the bids compared to the baseline treatment UPR for all po-

sitions. The GSPR auction only increases bid for the lowest position. There are no significant

differences observed between UPR and GSPR at other positions. Table 5 shows the impacts

of auction treatments on the bids distribution at each position using only the last 25 periods

data. The FPR auction still significantly increases the bids compared to UPR for all positions

and such difference increases for the lowest two positions during the last 25 periods. The dif-

ference between GSPR and UPR also becomes significant at the lowest position during the last

25 periods, which suggests the incentive to overbid under the GSPR auction among low cost

bidders.

Deviations from the Cost Another way to analyze the data is to compare the individual bid

deviations from their actual cost across treatments. Table 6 shows the regression results where

the dependent variable is the difference between individual bid and cost fromModel (1) to (4).

The dependent variable is changed to the absolute difference between individual bid and cost
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fromModel (5) to (8). The UPR auction is still treated as the baseline. According to Table 6, the

difference between individual bid and cost under FPR auction is significantly higher compared

to the UPR auction, while the difference and the absolute difference are not significant under

GSPR in all random effects models. Apparently, FPR auction leads to a larger deviation from

individual cost compared to UPR and GSPR, while the bid deviations are similar in UPR and

GSPR.
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Figure 5: Bids Distribution by Relative Rank in a Group, All Periods
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Notes: Figures are based on the data collected from all 50 periods. The black-lined boxes show the interquartile
range, the line in the box is the median, and the vertical line segments stretch to 5% and 95% percentile.
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Table 4: Regression Results, Ranked Bids, All Periods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
OLS/1 R.E./1 OLS/2 R.E./2 OLS/3 R.E./3 OLS/4 R.E./4 OLS/5 R.E./5

FPR 2.157∗∗∗ 2.855∗∗∗ 1.971∗∗∗ 2.040∗∗∗ 1.603∗∗∗ 1.503∗∗∗ 0.986∗∗∗ 1.153∗∗∗ 0.946∗∗ 1.007∗∗
(0.314) (0.266) (0.332) (0.172) (0.365) (0.166) (0.365) (0.163) (0.457) (0.396)

GSPR 0.402 0.607∗∗ -0.222 0.239 -0.0550 0.105 -0.146 0.150 -0.190 0.0265
(0.314) (0.266) (0.332) (0.172) (0.365) (0.166) (0.365) (0.163) (0.457) (0.396)

Constant 6.626∗∗∗ 2.189∗∗∗ 9.424∗∗∗ 2.724∗∗∗ 12.34∗∗∗ 3.026∗∗∗ 14.75∗∗∗ 2.945∗∗∗ 17.22∗∗∗ 3.906∗∗∗
(0.428) (0.226) (0.453) (0.153) (0.497) (0.155) (0.498) (0.171) (0.624) (0.499)

N 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800
log-likeli. N/A -3481.5 N/A -2824.1 N/A -2730.1 N/A -2672.2 N/A -4250.4
Ad.R2 0.2858 N/A 0.1557 N/A 0.0792 N/A 0.0379 N/A 0.0342 N/A

Notes: Standard errors in parentheses. The dependent variable is the bid in the lowest position in Model (1) and
(2), second lowest position in Model (3) and (4), and so on. Odd numbered regression models control for the
Session and Period fixed effects. Even numbered models are based on two-factor random effects model. Models
are based on the data from the all 50 periods. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Regression Results, Ranked Bids, Last 25 Periods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
OLS/1 R.E./1 OLS/2 R.E./2 OLS/3 R.E./3 OLS/4 R.E./4 OLS/5 R.E./5

FPR 6.272∗∗∗ 3.140∗∗∗ 3.776∗∗∗ 2.270∗∗∗ 2.726∗∗∗ 1.561∗∗∗ 1.424∗∗∗ 1.222∗∗∗ 0.470 1.145∗∗∗
(0.459) (0.327) (0.474) (0.221) (0.528) (0.183) (0.523) (0.179) (0.652) (0.395)

GSPR 1.358∗∗∗ 0.700∗∗ 0.284 0.421∗ 0.600 0.136 0.522 0.239 0.608 0.128
(0.459) (0.326) (0.474) (0.221) (0.528) (0.183) (0.523) (0.179) (0.652) (0.394)

Constant 6.202∗∗∗ 1.838∗∗∗ 9.392∗∗∗ 2.524∗∗∗ 11.91∗∗∗ 2.731∗∗∗ 14.08∗∗∗ 2.826∗∗∗ 17.41∗∗∗ 2.682∗∗∗
(0.496) (0.291) (0.512) (0.202) (0.571) (0.192) (0.565) (0.222) (0.704) (0.606)

N 900 900 900 900 900 900 900 900 900 900
log-likeli. N/A -1757.3 N/A -1378.1 N/A -1360.7 N/A -1366.7 N/A -2073.6
Ad.R2 0.3482 N/A 0.1768 N/A 0.0816 N/A 0.0370 N/A 0.0198 N/A

Notes: Standard errors in parentheses. The dependent variable is the bid in the lowest position in Model (1) and
(2), second lowest position in Model (3) and (4), and so on. Odd numbered regression models control for the
Session and Period fixed effects. Even numbered models are based on two-factor random effects model. Models
are based on the data from the all 50 periods. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.3 Allocation of Realized Surplus and Efficiency

This section investigates the allocation of realized surplus between the bidders and the auction-

eer (or the buyer). To provide a benchmark, I assume each completed contract is worth $20 to

the buyer (or vb = 20). The surplus is calculated as the average profit an individual winner

or the buyer receives from the completion of one contract. Note that even though the bidders’

surplus is theoretically unaffected by the buyer’s value toward the project, the percentage of

surplus split between buyer and seller is determined by the buyer’s value. Figure 6a shows

the allocation of social surplus between the buyer and the bidders. The bidder’s surplus is the
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Table 6: Regression Results, Deviations from the Cost

(1) (2) (3) (4) (5) (6) (7) (8)
OLS/diff OLS/diff R.E./diff R.E./diff OLS/|diff| OLS/|diff| R.E./|diff| R.E./|diff|

FPR 1.616∗∗∗ 1.699∗∗∗ 1.815∗∗∗ 1.700∗∗∗ 0.711∗∗∗ 0.747∗∗∗ 0.937∗∗∗ 0.747∗∗∗
(0.115) (0.202) (0.113) (0.201) (0.107) (0.210) (0.107) (0.210)

GSPR 0.341∗∗∗ 0.251 0.321∗∗∗ 0.242 -0.210∗ -0.0578 -0.0657 -0.0627
(0.115) (0.202) (0.113) (0.201) (0.107) (0.210) (0.107) (0.210)

cost -0.0924∗∗∗ -0.0928∗∗∗ -0.0504∗∗∗ -0.0501∗∗∗
(0.00436) (0.00434) (0.00412) (0.00411)

Constant -0.152 -0.188 0.978∗∗∗ 0.965∗∗∗ 0.802∗∗∗ 0.807∗∗∗ 1.418∗∗∗ 1.430∗∗∗
(0.157) (0.143) (0.163) (0.152) (0.147) (0.149) (0.154) (0.157)

N 9000 9000 9000 9000 9000 9000 9000 9000
log-likeli. N/A -17930.0 N/A -17984.4 N/A -17433.1 N/A -17487.0
Ad.R2 0.1682 N/A 0.2080 N/A 0.0815 N/A 0.0965 N/A

Notes: Standard errors in parentheses. The dependent variable is the difference between bid and cost in Model
(1) to (4). The dependent variable is the absolute difference between bid and cost in Model (5) to (8), Regression
models (1), (2), (5) and (6) control for session and period fixed effects. Models (3), (4), (7) and (8) are based on
two-factor random effects model. Models are based on the data from the all 50 periods. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01

lowest under the FPR auction and the highest under the UPR auction. The buyer’s surplus is

the opposite. Under the FPR auction, the buyer obtains the highest surplus while under the

UPR auction, the buyer obtains the lowest surplus.

Figure 6b shows the total realized social surplus under different auctionmechanisms. From

Figure 6b , the realized social surplus is approximately the same among threemechanisms. The

efficiency level is calculated using the realized social surplus divided by themaximumpossible

social surplus. Figure 7 shows the efficiency levels across all periods under three auction rules.

Results suggest that all auction rules generate a high efficiency level, with an average around

96.8% for FPR, 98.1% for GSPR and 98.1% for UPR. Inefficiency ariseswhen the low cost bidders

lose contracts to high cost bidders.

Regression analyses reveal that significant differences among three auction rules in terms

of surplus and efficiency. Table 7 compares different reverse auction rules in terms of realized

surplus (profit) for bidders and the buyer usingOLS and two-factor randomeffectsmodels. Re-

sults show that FPR auction yields the lowest bidders’ profit and the highest auctioneer’s profit.

The GSPR auction is ranked between the other two auctions in both bidders’ and auctioneer’s

profit. The UPR auction yields the highest bidders’ profit and lowest auctioneer’s profit among

the three auctionmechanisms. Based onModel (1) to (4), Table 7, the bidders’ surplus is signif-

icantly reduced under the FPR and GSPR auctions, though the reduction in surplus is smaller
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during the last 25 periods. Based on Model (5) to (8), Table 7, the auctioneer’s surplus is sig-

nificantly higher under the FPR and GSPR auctions. During the last 25 periods, GSPR yields

a higher auctioneer’s surplus compared to FPR (Model (8), βFPR = 0.935 < βGSPR = 0.973),

even though the surplus difference between FPR and GSPR is not significant at a 5% level.

Table 8 compares the auction efficiency calculated at the group level using realized social

surplus divided the maximum social surplus. Regression results suggest the FPR auction lead

to the lowest efficiency level, with a tendency to further decrease in later periods. The GSPR

auction is not statistically different from UPR auction in terms of efficiency. Note the the auc-

tioneer’s profit and the efficiency can be potentially influenced by the auctioneer’s value. In the

Appendix, I also compare the influence of different buyer’s values on the efficiency level and

find the main conclusion is unchanged (Table A2 and A3).

The above results suggest important tradeoffs when choosing the reverse auction mecha-

nism in a multi-award environment. The UPR and GSPR auctions are more efficient, while

FPR and GSPR auctions yield a higher surplus for the auctioneer. From the perspective of bid-

ders, UPR auction is preferred as it yields the highest bidders’ surplus. From the valuation

perspective, UPR auction is the preferred approach as bidders have the incentive to reveal their

true private cost. The GSPR auction is also desirable from the valuation perspective as the bids

are close to the true cost in the experiment. Thus, from the auctioneer’s perspective, GSPR com-

bines some nice properties of UPR and FPR auction and has the potential to become a popular

method applied in practice.
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Table 7: Regression Results, Social Surplus

(1) profit (2) profit (3) profit (4) profit (5) b.profit (6) b.profit (7) b.profit (8) b.profit
All 50 All 50 Last 25 Last 25 All 50 All 50 Last 25 Last 25

FPR -1.260∗∗∗ -1.260∗∗∗ -1.129∗∗∗ -1.129∗∗∗ 1.227∗∗∗ 1.227∗∗∗ 0.935∗∗∗ 0.935∗∗∗
(0.0926) (0.0920) (0.133) (0.132) (0.137) (0.137) (0.198) (0.197)

GSPR -0.850∗∗∗ -0.850∗∗∗ -0.784∗∗∗ -0.784∗∗∗ 1.009∗∗∗ 1.009∗∗∗ 0.973∗∗∗ 0.973∗∗∗
(0.0926) (0.0920) (0.133) (0.132) (0.137) (0.137) (0.198) (0.197)

Constant 3.020∗∗∗ 2.803∗∗∗ 2.900∗∗∗ 2.751∗∗∗ 8.036∗∗∗ 7.877∗∗∗ 8.579∗∗∗ 7.891∗∗∗
(0.285) (0.390) (0.306) (0.401) (0.422) (0.126) (0.456) (0.164)

N 1800 1800 900 900 1800 1800 900 900
log-likelihood N/A -3406.9 N/A -1719.5 N/A -4111.4 N/A -2074.5
Adjusted R2 0.3056 N/A 0.2948 N/A 0.0538 N/A 0.0410 N/A

Notes: Standard errors in parentheses. The dependent variable is average profit for a winning bidder fromModel
(1) to (4) and for the buyer fromModel (5) to (6). Odd numbered regression models control for the Session and
Period fixed effects. Even numbered models are based on two-factor random effects model. Model (1), (2), (5)
and (6) are based on the data from all periods. Model (3), (4), (7) and (8) are based on the data from the last 25
periods. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Regression Results, Efficiency Level

(1) Efficiency (2) Efficiency (3) Efficiency (4) Efficiency
All 50 Periods All 50 Periods Last 25 Periods Last 25 Periods

FPR -0.0120∗∗∗ -0.0120∗∗∗ -0.0264∗∗∗ -0.0264∗∗∗
(0.00454) (0.00454) (0.00759) (0.00759)

GSPR 0.000531 0.000531 0.00122 0.00122
(0.00454) (0.00454) (0.00759) (0.00759)

Constant 0.977∗∗∗ 0.981∗∗∗ 0.984∗∗∗ 0.983∗∗∗
(0.0140) (0.00589) (0.0175) (0.00946)

N 1800 1800 900 900
log-likelihood N/A 2016.2 N/A 853.9
Adjusted R2 0.0287 N/A 0.0592 N/A

Notes: Standard errors in parentheses. The dependent variable efficiency is calculated at the group level.
Regression models (1) and (3) control for the Session and Period fixed effects. Models (2) and (4) are based on
two-factor random effects model. Model (1) and (2) are based on the data from all periods. Model (3) and (4)
are based on the data from the last 25 periods. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5 Conclusion

This research expands the current design in the reverse auction mechanisms by exploring the

performance of three reverse auction rules when multiple homogenous contracts are awarded

to different bidders. A series of lab experiment results suggest noticeable differences among the

three reverse auction approaches in terms of bid distribution, surplus allocation and achieved

efficiency. The First Price Reverse auction leads to the highest bids on average, while Uniform

Price Reverse auction leads to the lowest bids that are closer to individual private cost. Theoret-

ically, a symmetric Bayesian Nash equilibrium may not exist in the GSPR auction. Empirically,

the GSPR auction can achieve a very high efficiency level similar to the UPR auction and sig-

nificantly reduce the auctioneer’s cost, as well as yield the auctioneer a surplus level similar to

the FPR auction. Furthermore, the GSPR auction performs well from a valuation perspective

as the observed bids well approximate individual true cost.

The ordinary (“forward”) Generalized Second Price auctions have been used widely by

search engines to sell online advertisements. This paper first applies the Generalized Second

Price auctions in a reverse auction context and compares its performance with other commonly

used reverse auction formats in amulti-award environment. As a first step, the ratio of awarded

units and the total number of units is fixed in the experiment. Future experiments can vary the

number of units awarded in the experiment and investigate the effects of winning probability
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on observed bidding behaviors. Furthermore, future studies could explore the possibility of

designing thewinning price as a function of others’ bids aswell as thewinning position, similar

to the differentiated click-rate in the sponsored search auctions.

Note that in a reverse or procurement auction, the auctioneer often has different targets.

Similar to this study, the auctioneer may have a pre-defined objective such as purchasing a

certain unit of goods from the sellers, then the auctioneer’s objective might be minimizing the

total cost or maximizing the total benefit (Schilizzi and Latacz-Lohmann, 2007). Alternative,

the auctioneer may face a finite budget, then the objective is to maximize the total number of

units that the auctioneer can purchase in a reverse auction market (Cason et al., 2003; Cason

and Gangadharan, 2005). Future research can compare the empirical performance of different

reverse auctions when the auctioneer has different objectives.
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Appendix

A Equilibrium Strategy in GSPR

Following Gomes and Sweeney (2014), denote the bidder i’s (with a private cost c) expected

payment in equilibrium by E(p(c)), by the Revelation Principle, the E(p(c)) has to satisfy

c ∈ argmax
ĉ

E(p(ĉ))−
M∑
k=1

Gk(ĉ)c. (A1)

According to the Integral-form Envelop Theorem (Milgrom and Segal, 2002), equation (A1)

implies that,

E(p(c))−
M∑
k=1

Gk(c)c =
M∑
k=1

∫ c̄

c

Gk(c̃)dc̃+ E(p(ĉ)), (A2)

where E(p(ĉ)) = 0 as the highest cost bidder expects to receive zero payment with a zero prob-

ability of winning the auction. According to the definition of GSPR,

E(p(c)) = E(b(k+1))

=
∑M

k=1Gk(c)E(s(c(k+1:N))|c(k:N) ≤ c ≤ c(k+1:N))

=
∑M

k=1Gk(c)E(s(c(1:N−k))|c ≤ c(1:N−k))

=
∑M

k=1Gk(c)
∫ c̄

c
s(c̃) (N−k)(1−F (c̃))N−k−1f(c̃)

(1−F (c̃))N−k dc̃,

(A3)

Based on equations (A2) and (A3)

M∑
k=1

Gk(c)c+
M∑
k=1

∫ c̄

c

Gk(c̃)dc̃ =
M∑
k=1

Gk(c)

∫ c̄

c

s(c̃)
(N − k)(1− F (c̃))N−k−1f(c̃)

(1− F (c))N−k
dc̃. (A4)

where

Gk(c) =

N − 1

k − 1

 (1− F (c))N−k(F (c))k−1. (A5)
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Differentiating w.r.t. c on both sides,

∑M
k=1

dGk(c)
dc

c = −s(c) f(c)
1−F (c)

∑M
k=1(N − k)Gk(c)

+
∑M

k=1

dGk(c)

dc
(1−F (c))N−k+Gk(c)(N−K)(1−F (c))N−k−1)f(c)

(1−F (c))2N−2k

∫ c̄

c
s(c̃)(N − k)(1− F (c̃))N−k−1f(c̃)dc̃

= −s(c) f(c)
1−F (c)

∑M
k=1(N − k)Gk(c)

+
∑M

k=1

(
dGk(c)

dc
N−k

(1−F (c))N−k +Gk(c) (N−k)2f(c)
(1−F (c))N−k+1

) ∫ c̄

c
s(c̃)(1− F (c̃))N−k−1f(c̃)dc̃

(A6)

Differentiating equation (A5),

∂Gk(c)
∂c

=

N − 1

k − 1

 f(c)[1− F (c))N−k−1F k−2(c)[(k − 1)(1− F (c))− (N − k)F (c)]

= Gk(c)
(1−F (c))F (c)

f(c)[(k − 1)(1− F (c))− (N − k)F (c)]

= (k − 1) f(c)
F (c)

Gk(c)− (N − k) f(c)
1−F (c)

Gk(c)

(A7)

Combining equations (A6) and (A7),

∑M
k=1

(
(k − 1) f(c)

F (c)
Gk(c)c− (N − k) f(c)

1−F (c)
Gk(c)c

)
= −s(c) f(c)

1−F (c)

∑M
k=1(N − k)Gk(c)

+
∑M

k=1

(
(k − 1)(N − k) f(c)

F (c)(1−F (c))N−kG(c)
) ∫ c̄

c
s(c̃)(1− F (c̃))N−k−1f(c̃)dc̃

(A8)

Rewrite the above equation,

∑M
k=1(N − k) f(c)

1−F (c)
Gk(c)(s(c)− c)

= −
∑M

k=1(k − 1) f(c)
F (c)

Gk(c)c

+
∑M

k=1

(
(k − 1)(N − k) f(c)

F (c)(1−F (c))N−kG(c)
) ∫ c̄

c
s(c̃)(1− F (c̃))N−k−1f(c̃)dc̃.

(A9)

Therefore,

s(c) = c+
∑M

k=1 γs(c)
∫ c̄

c
(c+ s(c̃))(1− F (c̃))N−k−1f(c̃)dc̃. (A10)

where

rs(c) =
(k−1)(N−k)

Gs(c)

F (c)(1−F (c))N−k−1∑M
t=1(N−t)Gt(c)

. (A11)
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Specifically, when N = 5,M = 2, equation (A10) implies

(s(c)− c)(4G1(c) + 3G2(c))F (c)(1− F (c))2

3G2(c)
=

∫ c̄

c

(c+ s(c̃))(1− F (c̃))2f(c̃)dc̃. (A12)

or

(s(c)− c)(1− F (c))2(1 + 2F (c))

3
=

∫ c̄

c

(c+ s(c̃))(1− F (c̃))2f(c̃)dc̃. (A13)

∫ c̄

c

(c+ s(c̃))(20− c̃)2dc̃ = (s(c)− c)(20− c)2(c+ 5)

3
. (A14)

Rewrite the above equation as

s(c) = c+
3
∫ c̄

c
(c+ s(c̃))(20− c̃)2dc̃

(20− c)2(c+ 5)
. (A15)

Non-existence of Symmetric Equilibrium Take the first order derivative with respect to c,

s′(c) = 1 +
3((20− c)− (c+ s(c))(20− c)2)− (s(c)− c)(3c2 − 7c+ 200)

(20− c)2(c+ 5)
. (A16)

When s(c) > 0 and c ∈ [5, 20], according to equation (A16), we can show that s′ < 0, which

violates the requirement that s′(c) must be strictly increasing for an efficient equilibrium, and a

symmetric equilibriumdoes not exist in our case (Caragiannis et al., 2011; Gomes and Sweeney,

2014).

B Additional Regression Results and Figures
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Table A1: Regression Results, Last 25 Periods, Quadratic Cost

(1) (2) (3) (4)
R.E. R.E. R.E. R.E.

cost 0.510∗∗∗ 0.961∗∗∗ 0.572∗∗∗ 0.691∗∗∗
(0.0381) (0.00705) (0.0376) (0.0456)

cost2 0.0159∗∗∗ 0.0156∗∗∗ 0.0108∗∗∗
(0.00151) (0.00148) (0.00181)

FPR 1.675∗∗∗ 7.147∗∗∗ 3.706∗∗∗ 5.667∗∗∗
(0.196) (0.427) (0.248) (0.492)

FPR×cost -0.792∗∗∗ -0.163∗∗∗ -0.522∗∗∗
(0.0651) (0.0122) (0.0789)

FPR×cost2 0.0253∗∗∗ 0.0145∗∗∗
(0.00258) (0.00314)

Constant 3.211∗∗∗ 0.359∗∗ 2.495∗∗∗ 1.839∗∗∗
(0.246) (0.143) (0.248) (0.285)

N 4500 4500 4500 4500
log-likelihood -8786.6 -8706.2 -8698.9 -8688.4

Notes: Standard errors in parentheses. Results are based on the bids from last 25 periods and the Uniform Price
and Generalized Second Price Reverse Auction. Regression models (1) to (4) are based on a two-factor random
effects model. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A2: Regression Results, Efficiency Level, Buyer Value 15

(1) Efficiency (2) Efficiency (3) Efficiency (4) Efficiency
All 50 Periods All 50 Periods Last 25 Periods Last 25 Periods

FPR -0.00489∗∗∗ -0.00489∗∗∗ -0.0108∗∗∗ -0.0108∗∗∗
(0.00178) (0.00178) (0.00297) (0.00296)

GSPR 0.000174 0.000174 0.000273 0.000273
(0.00178) (0.00178) (0.00297) (0.00296)

Constant 0.991∗∗∗ 0.993∗∗∗ 0.994∗∗∗ 0.994∗∗∗
(0.00550) (0.00227) (0.00685) (0.00366)

N 1800 1800 900 900
log-likelihood N/A 3697.7 N/A 1699.9
Adjusted R2 0.0283 N/A 0.0601 N/A

Notes: Standard errors in parentheses. The dependent variable efficiency is calculated at the group level.
Regression models (1) and (3) control for the Session and Period fixed effects. Models (2) and (4) are based on
two-factor random effects model. Model (1) and (2) are based on the data from all periods. Model (3) and (4)
are based on the data from the last 25 periods. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A3: Regression Results, Efficiency Level, Buyer Value 25

(1) Efficiency (2) Efficiency (3) Efficiency (4) Efficiency
All 50 Periods All 50 Periods Last 25 Periods Last 25 Periods

FPR -0.00264∗∗∗ -0.00264∗∗∗ -0.00587∗∗∗ -0.00587∗∗∗
(0.000962) (0.000961) (0.00159) (0.00159)

GSPR 0.0000909 0.0000909 0.000132 0.000132
(0.000962) (0.000961) (0.00159) (0.00159)

Constant 0.995∗∗∗ 0.996∗∗∗ 0.997∗∗∗ 0.997∗∗∗
(0.00296) (0.00122) (0.00368) (0.00196)

N 1800 1800 900 900
log-likelihood N/A 4810.4 N/A 2258.5
Adjusted R2 0.0279 N/A 0.0600 N/A

Notes: Standard errors in parentheses. The dependent variable efficiency is calculated at the group level.
Regression models (1) and (3) control for the Session and Period fixed effects. Models (2) and (4) are based on
two-factor random effects model. Model (1) and (2) are based on the data from all periods. Model (3) and (4)
are based on the data from the last 25 periods. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A1: Cumulative Bids Distribution under Different Reverse Auction Mechanisms.
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Figure A2: Session Specific Bid Median, UPR

36



0
5

10
15

20
25

30
M

ed
ia

n 
Bi

d

5 10 15 20
cost

Session 7, FPR
0

5
10

15
20

25
30

M
ed

ia
n 

Bi
d

5 10 15 20
cost

Session 8, FPR

0
5

10
15

20
25

30
M

ed
ia

n 
Bi

d

5 10 15 20
cost

Session 9, FPR

0
5

10
15

20
25

30
M

ed
ia

n 
Bi

d

5 10 15 20
cost

Session 10, FPR

0
5

10
15

20
25

30
M

ed
ia

n 
Bi

d

5 10 15 20
cost

Session 11, FPR
0

5
10

15
20

25
30

M
ed

ia
n 

Bi
d

5 10 15 20
cost

Session 12, FPR

Figure A3: Session Specific Bid Median, FPR
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Figure A4: Session Specific Bid Median, GSPR
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Figure A5: Bids Distribution by Relative Rank in a Group, Last 25 Periods
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Notes: Figures are based on the data collected from the last 25 periods. The black-lined boxes show the interquartile
range, the line in the box is the median, and the vertical line segments stretch to 5% and 95% percentile.
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