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1. Introduction

Open access harvesting and development of more efficient fishing methods have resulted in overcapitalization of fisheries and depletion of fish stocks, reducing the  profitability of the fishing industry and endangering many fish species. Disputes over the management of fish stocks have been heated, and the problems in marine resource management have over the years received increasing attention among policy makers. Conflicts in fisheries management are difficult enough to resolve within a single jurisdiction. The difficulties are compounded when management authority is divided among separate jurisdictional regions whose interests may diverge sharply. Nations involved in transboundary fisheries have recognized a mutual advantage in cooperative management of the resource. But negotiations over harvest allotments have often proved to be arduous, characterized by periods of stalemate and interrupted by “fish wars” that have left fish stocks decimated and fishing industry unprofitable. 

How can one explain the persistence of “fish wars” and identify institutional frameworks that might result in more successful management of transboundary fisheries? One challenge to transboundary fisheries management is that there is no international jurisdiction with the authority to enforce agreements. Cooperative solutions have to be self-enforcing. The theory of non-cooperative games has provided insights into the transboundary management problem and the dynamics of negotiations in search of cooperative agreements. Munro (1979), Clark (1980), Kaitala and Pohjola (1988), Levhari and Mirman (1980), and Vislie (1987), among others, study simultaneous harvest of a single fish stock by competing fleets. Hannesson (1997) studies how critical the number of agents sharing a fish stock is for realizing the cooperative solution supported by threat policies. Hannesson (1995) and McKelvey (1997) address the management of a sequentially harvested fish stock. Hannesson examines cooperative management as a self-enforcing equilibrium in a non-cooperative game. McKelvey studies the transboundary fishery problem in a principal-agent setting. Kaitala and Munro (1997) and Kaitala and Lindroos (1998) address the related question of the management of straddling fish stocks subject to multinational harvest in the high seas. 

Agreements on joint management generally define the amount of fish left behind after harvest in each part of the transboundary fishery. The abandonment level, called the escapement, determines the economic and biological development of a fishery. Intricacies arise when stock recruitment varies stochastically or escapements are observed with error. Parties negotiating over cooperative management can no longer directly observe adherence to the agreement by the other fleets. Laukkanen (2003) studies the case of stochastic variation in stock recruitment in a transboundary setting, where the stock available to the first fishery in the sequence depends on both the escapement from another fishery targeting the spawning stock, and on a stochastic shock on recruitment. Laukkanen describes an agreement that supports cooperative harvesting in a sequential fishery in the presence of recruitment uncertainty. This paper will extend the work to considering a symmetric setting with N agents as opposed to the asymmetric model of a two agent sequential fishery used by Laukkanen. The paper provides further insights into why “fish wars” persist, and suggest ways in which cooperative agreements might be designed to overcome the difficulties in transboundary fisheries management. 

2. The Model 

Consider a group of N countries that harvest a shared stock. Each agent harvests in his own area. The fish migrate only slowly between the areas; each agent thus harvests only a portion of the stock. The growth of the stock is dependent on the aggregate size of the stock, because of seasonal pattern of breeding migration or because the eggs and larvae are distributed over the entire habitat of the stock irrespective of where they are spawned. The unit area is defined as the area that the stock occupies. The area is divided among the N agents. In each period, the aggregate stock available to harvest is given by 
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 is agent i’s share of the area where the stock is located. By assumption, the fish redistribute in the same way after each spawning. The share parameters will the be constant. Further, the fish do not migrate from one agent’s area to another during the fishing season. Each agent then has full control of the abandonment level in his own area, 
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. After the fishing season the stock grows and redistributes itself randomly over the entire area. Ignoring natural mortality during the fishing season, this leads to the growth function
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 the aggregate escapement, and 
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 is a sequence of independent identically distributed random variables with unit mean. Each 
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 is a shock to the recruitment that the agents cannot observe directly. The random multipliers 
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, with a common cumulative distribution function [image: image12.wmf]F

 and continuous density f. The recruitment relation 
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. In the absence of harvest, the aggregate escapement 
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 equals the stock X, and the process 
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 would eventually enter and then stay within in the interval 
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on which it would, in the limit, attain a stationary distribution


Let x denote the current size of the exploited stock at any moment in time, c the constant unit cost of fishing effort, and p the constant price of catch. Assuming that the harvest follows the Schaefer production function, the marginal cost of harvest for each agent is given by 
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. The profits in period t to Agent 1 from harvesting the stock from 
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The agents are risk neutral and maximize their expected discounted net revenue 
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 denotes the common discount factor 
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 raised to the tth power.


We will next considers the implications of noncooperative harvest in the shared fishery with stochastic recruitment. We will then proceed to describe a cooperative agreement that can be supported even in the presence of uncertainty. 

3. Noncooperation in the stochastic transboundary fishery

We first examine non-cooperative harvesting, where each agent makes his harvest decision without considering its effect on the other agent’s expected payoff. There are no negotiations or understandings between the agents. Each agent maximizes his expected payoff, taking as given the other fleets’ escapements which he can only infer from his knowledge of the other fleets’ objective functions. The lowest possible escapement levels are the zero marginal profit levels 
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. Agent i will participate in harvest in period t only if his marginal net revenue 
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 at the outset of harvest is positive. We will assume that 
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 and for all i. All the agents will then harvest at any state of nature.


Agent i’s expected discounted payoff in period t is

(2)
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The first order condition for maximum is 

(3)
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We call the escapement that solves equation (3) 
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. These escapements give rise to the expected non-cooperative equilibrium profits 
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. Note that the predictions from the model where each fishery has control of the portion of the stock feeding in its area are less pessimistic that those from the sequential fishery models by Hannesson (1995), McKelvey (1997), and Laukkanen (2003). The agents do not harvest all the way down to the zero marginal profit level 
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 but at least partially account for the effect of their harvest on the stock available next year. 


We next study how the solution to equation (3) compares to the sole owner optimum. If the fishery were managed by a sole owner with control of the escapement 
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 in each fishing area. The  expected payoff 
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 is the sum of the N agents’ payoffs, 

(4) 
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The first order condition for the sole owner optimal 
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 that maximizes equation (4), denoted by 
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The individual agent’s first order condition in (3) only balances the marginal benefit of an additional unit of harvest this year to the benefit forgone by the agent next year due to reduced recruitment. An individual agent fails to account for the effect of reduced recruitment on the benefits accruing to the other agents harvesting the stock. The society’s first order condition in (5) instead accounts for the effect of one agent’s additional harvest on the benefits to all agents in the following year. Since 
[image: image43.wmf]i

S

/

c

p

-

 is increasing in 
[image: image44.wmf]i

S

, the 
[image: image45.wmf]i

S

 solving (3) is smaller than the 
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 solving (5). An individual agent harvesting independently of the others leaves a suboptimal escapement from the point of view of the fishery as a whole. 


We next study whether preplay communication, without commitment, enables the agents to manage the resource more successfully. Assume that the agents confer, and agree on a cooperative management scheme that yields higher expected payoffs to each agent. Hannesson (1997) provides a deterministic model to study cooperative harvesting supported by the threat of reverting to non-cooperative harvesting if defection is detected. Stock uncertainty complicates the enforcement of harvesting agreements since agents are no longer able to directly observe the actions of their competitors. We next examine conditions under which cooperative harvesting can be sustained as a self-enforcing equilibrium when stock fluctuations are incorporated into the model. 

4. Cooperative harvesting

Assume now that the agents confer and negotiate on a cooperative harvesting strategy that would allow them to benefit more from the productive potential of the fishery resource. Suppose that the agents agree on constraint Pareto efficient cooperative escapement levels that maximize the joint benefit from the fishery, subject to the constraint that it is in each agent’s interest to adhere to the agreement. Since the recruitment is stochastic, and agents only have access to the stock in their own fishing area, they cannot directly monitor the escapement left by the others. The stock available for harvest can be small either because someone cheated, or because there was a negative shock on the recruitment. Reverting to non-cooperative harvest for ever if low stock levels were observed, the punishment strategy used in most repeated game models of shared resource management, would be unnecessarily harsh in that non-cooperative harvest may be triggered by bad luck rather than cheating. Instead, we consider an agreement where the agents settle on the threat strategies of reversion to the non-cooperative escapements 
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 periods if violations of the agreement are detected.

Formally, suppose that the agents decide to cooperate and agree on a trigger strategy of reverting to the non-cooperative escapements 
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 if stock levels below an agreed upon trigger stock level 
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 are observed. The punishment phase will last for 
[image: image51.wmf]1

-

T

 periods. At the conclusion of the punishment phase, the agents will return to cooperative harvest levels. It makes sense to allow for a finite punishment phase, since a punishment period may be triggered by a state of nature as well as defective behavior by an agent. 

Suppose the agents then commence harvesting in accordance with their cooperative escapement levels 
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 in a Nash equilibrium in trigger strategies. They continue to do so until recruitment [image: image53.wmf]t
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 periods of punishment follow, during which the agents harvest to the non-cooperative escapements 
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 punishment periods, cooperation is resumed. Once resumed, cooperation prevails until the next time that [image: image62.wmf]X
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Formally, the agreement is defined as follows. The game has normal and reversionary stages. Agent i regards period t as normal if  

(a)
t=0, 

(b)
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and reversionary otherwise. 

The agents’ strategies are defined by 
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The escapement left by agent i in period t determines the agent’s current payoff and the probability of triggering a punishment phase. The expected payoff from leaving an escapement 
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 in period t, after the current stock 
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 is the probability of the stock next year being below the trigger level, thus launching a punishment phase
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We next solve for 
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The subgame starting in period 
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 in equation (6) both follow a period in which the agents left the cooperative escapement. In such a period cooperation continues with probability 
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Using the formula for the geometric sum
 yields

(8)  
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Solving (8) for 
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Adding and subtracting 
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(10)
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.

The agent’s expected cooperative payoff consists of the noncooperative payoff, plus the one period gain from cooperation and payoffs from transition to and from punishment period, all appropriately discounted. The agents’ actions are not observed. Each agent chooses the escapement that maximizes his expected payoff under cooperation, 
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Assuming an interior solution, the necessary condition for maximizing 
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. From equation (10), the first order condition for maximizing 
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Agent i’s optimal cooperative escapement 
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balances the marginal profit from additional harvest in season t to the marginal increase in the risk of losses incurred from reversionary versus cooperative play in the following period, appropriately discounted. 

We next turn into how the countries set T and 
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 in an optimal manner, given that for any T, 
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 pair each fishery’s optimal escapement under cooperation is determined by the first order condition in (11). Countries negotiate on the length of the punishment phase, determined by T, and the trigger stock level 
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, knowing that each country sets its escapement according to (11) in order to maximize 
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 are set to maximize the expected joint payoff

(12)  
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subject to the first order conditions in (11). Each agent must also obtain at least his expected non-cooperative payoff. The 
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 in (12) are the weights to each country’s payoff in the joint maximization problem. For any T and 
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, the first order conditions in (11) determine the 
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. Note that this approach is only warranted if there is a unique 
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 that satisfies (11). A cooperative solution that satisfies (12) for all i is a self-enforcing equilibrium, and the strategies are subgame perfect. 


If the cooperative solution is such that 
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> 0, punishment phases of reversion to non-cooperative harvests are observed with a positive probability even if the countries agree on a cooperative harvesting strategy. These periods are necessary to support the cooperative agreement. The cooperative solution is not renegotiation proof. At the outset of a punishment phase, the countries could presumably confer and decide to continue cooperative harvest. However, this would unravel the rational for cooperation and it will thus be in each country’s interest to follow the agreement in punishment periods as well. 

5. Conclusion

We examine cooperative and non-cooperative harvesting in a stochastic transboundary fishery shared by N agents. Even when each agent has full control of the harvest and escapement in a part of the area that the entire stock occupies, the non-cooperative escapement levels will be suboptimal. We define conditions under which cooperative harvesting can be sustained as a self-enforcing equilibrium when the actions of the agents are not observed. Even when all the agents cooperate, reversionary periods may occur with a positive probability. Although the agents know that a low stock level reflects a stochastic shock to recruitment, it is rational to participate in reversionary periods. Otherwise, there would be no incentive to cooperate. The equilibrium is subgame perfect but not renegotiation proof. Supposedly the agents could renegotiate and agree to continue cooperation after low stock levels or low escapements have been observed. However, all parties realize that renegotiating would unravel the rational for cooperation. 

An important extension would be to study the agreement numerically to illustrate the characteristics of the cooperative harvesting game. Further, it would be of interest to study the impacts of different degrees of uncertainty and the effect of the number of agents sharing the fishery on the likelihood of sustaining cooperative harvest levels. Finally, the model could be extended to allow for uncertainty in implementing the agreed upon escapement levels. 
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