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Abstract

This paper provides an axiomatic characterization of two rules for
comparing alternative sets of objects on the basis of the diversity that
they offer. The framework considered assumes a Þnite universe of ob-
jects and an a priori given ordinal quadernary relation that compares
alternative pairs of objects on the basis of their ordinal dissimilarity.
Very few properties of this quadernary relation are assumed (beside
completeness, transitivity and a very natural form of symmetry). The
two rules that we characterize are the maxi max criterion and the lexi-
max criterion. The maxi max criterion considers that a set is more
diverse than another if and only if the two objects that are the most
dissimilar in the former are weakly as dissimilar as the two most dis-
similar objects in the later. The lexi-max criterion is deÞned as usual
as the lexicographic extension of the maximax criterion.

1 Introduction

Would the killing of 50 000 thousand ßies of a speciÞc species have the
same impact on the reduction of biological diversity than that of 200 white
rhinoceros ? Is the diversity of opinions expressed in the written press larger
in France than in the US ? Is the choice of models of cars offered by a
particular retailer more diverse than that of another ? These are examples
of questions whose answers require a precise notion of diversity.

Biologists have probably been the Þrst scientists interested in develop-
ing and implementing numerical indices that aim at measuring the biological
diversity offered by alternative ecosystems. One of the most widely used of
these indices is Shannon (1948) weighted entropy measure proposed in bi-
ology by Good (1953) (see e.g. Baczkowski, Joanes and Shamia (1997),

∗IDEP-GREQAM and Université de la Méditerranée, Centre de la Vieille Charité, 2,
rue de la Charité, 13 002 Marseille, Cedex, France

�IDEP-GREQAM and Université de la Méditerranée, Centre de la Vieille Charité, 2,
rue de la Charité, 13 002 Marseille Cedex, France Gravel@ehess.cnrs-mrs.fr

1



Baczkowski, Joanes and Shamia (1998) and Magurran (1998) for other re-
Þnements and discussions of this class of indices). The generalized Good
index evaluates the diversity of any ecosystem by counting, for each species,
the frequency of living individuals within the species relative to the total
number of living individuals and calculates a weighted entropy over these
relative frequencies. Yet, and despite its wide use and computational con-
venience for applications, this index lacks sound justiÞcations. Why after
all should one use the speciÞc entropy formula for appraising the impact of
major changes on biodiversity ? Answering questions like this is important
in these days where many countries who have ratiÞed the UN 1992 conven-
tion on biological diversity have adopted economically costly environmental
regulations in order to prevent a deterioration of biological diversity caused
by human activities. It is all the most important as the generalized entropy
measure suffers from the drawback of paying no attention whatsoever to
either inter-species dissimilarities, or to the possibility for two individuals
of the same species to be more dissimilar than two individuals coming from
different species. For instance, according to the generalized entropy formula,
a world in which all living individuals are equally split between two species
of ßy is just as diverse as one in which the living individuals are split equally
between chimpanzees and hippocampi.

Recent efforts, actually due to economists (Weitzman (1992),Weitzman
(1993), Weitzman (1998)), have been made to provide axiomatic founda-
tions to the measurement of biodiversity. Weitzman approach is based on
the primitive notion of a cardinal numerical measure of distance between
living creatures. Such a numerical distance enables one to say things such
as �the biological distance between a chimpanzee and a bee is twice as
large as is the biological distance between a rainbow trout and a kokanee
salmon�. Using such a numerical distance, Weitzman (1992) axiomatically
characterizes a sophisticated iterative lexicographic method for appraising
the diversity offered by a set of living individuals. Using a somewhat dif-
ferent setting, Bossert, Pattanaik and Xu (2002) also provide an axiomatic
characterization of the Weitzman�s method by taking as given a cardinal
numerical measure of distances between the objects. Weitzman�s procedure
has been substantially generalized in a recent paper by Nehring and Puppe
(2002) who propose to derive the basic numerical distance function assumed
by Weitzman from an a priori grouping of the objects into collections of
�attributes� (for instance being a mammal), each attributed being weighted
by a (cardinally meaningful) numerical function.

Weitzman or Nehring and Puppe procedure, by taking due account of
the (possibly) different distances that may exist between alternative pairs of
living creatures, is clearly sensitive to inter-species dissimilarities. It also al-
lows for the possibility of two individuals of a particular species (chimpanzee
for instance) to be more diverse than two individuals coming from different
species. On the other hand, it is not at all clear that the current state of
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knowledge in biology leads to such a precise cardinal measure of distance
between living creatures as what is required by these approaches. All biolo-
gists would probably agree that a chimpanzee and a bee are more dissimilar
than a rainbow trout and a kokanee salmon. But would they agree to say
that the dissimilarity between a chimpanzee and a bee is twice that between
a rainbow trout and a kokanee salmon ? Does the discriminating power of
current biology enable one to perform such precise cardinal statements ?

In the last 15 years or so, interest in diversity measurement has also
arisen in non-welfarist normative economics, in connection with the issue
of comparing alternative opportunity sets on the basis of their freedom of
choice (see e.g. Arrow (1995), Bossert (1997), Bossert (2000), Bossert, Pat-
tanaik and Xu (1994), Dutta and Sen (1996), Foster (1993), Gravel (1994),
Gravel (1998), Gravel, Laslier and Trannoy (1998), Jones and Sugden (1982),
Klemisch-Ahlert (1993), Kreps (1979), Nehring and Puppe (1999), Pat-
tanaik and Xu. (1990), Pattanaik and Xu (1998), Pattanaik and Xu (2000b),
Puppe (1995), Puppe (1996), Puppe (1998), Puppe and Xu (1996), Sen
(1988), Sen (1991), Sugden (1985), Suppes (1987), Suppes (1996) and Van-
Hees (1997) for representative pieces of this literature and Barberà, Bossert
and Pattanaik (n.d.), Foster (2001) and Sugden (1998) for surveys). A major
weakness of many rankings of opportunity sets examined in this literature
is their insensitivity to the diversity of the options contained in the oppor-
tunity set. Even if the fact of being forced (by lack of available alternative)
to drive a blue Volkswagen Golf to go to some destination can be considered
freedom-wise equivalent to being forced to make the same trip by train, this
does not imply that the possibility of getting to destination by driving ei-
ther a blue or a red Volkswagen Golf offers the same freedom of choice as
having the possibility of making the trip either by train or by driving a red
Golf. Yet many rankings of opportunity sets examined in the literature fail
to make the distinction.

Albeit diversity appears to be an essential element to any deÞnition of
freedom of choice, we do not think that freedom of choice should be reduced
to diversity. The precise connection between freedom of choice and diversity
is a delicate issue that shall not attract our attention here. Rather, the object
of this paper is to provide an axiomatic characterization of two rankings of
sets on the sole basis of the diversity that they offer.

As in Weitzman (1992),Weitzman (1993), Weitzman (1998) , Bossert et
al. (2002) and, to some extent, Nehring and Puppe (2002), the two rankings
characterized in this paper are based on an a priori notion of �proxim-
ity�, or �dissimilarity�, between the objects that is taken as given. However,
the notion of similarity on which our axioms are based requires much less
information than what is necessary to deÞne a cardinally meaningful numer-
ical distance function such as that used in these contributions. Rather, the
primitive notion of similarity on which we base our axiomatic construction
is ordinal. That is, it requires the ability to perform statements like �the bio-
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logical distance between a chimpanzee and a bee is larger than the biological
distance between a rainbow trout and a kokanee salmon� but does not sup-
pose the capacity of quantifying further these statements. In particular, it
does not require the ability to make statements like �the biological distance
between a chimpanzee and a bee is twice as large as is the biological dis-
tance between a rainbow trout and a kokanee salmon� that are required by a
cardinal notion. We believe that the capacity of making cardinally meaning-
ful statements with respect to the �similarity� of alternative pair of objects
exceeds the current discriminating power of humans, even in disciplines as
developed and sophisticated as biology. The very best that we can hope for
in practice is a set of ordinal statements of the type: �the objects a and b
are at least as dissimilar as the objects c and d.� This information, that we
summarize formally by a quadernary relation, is the only one used in the
characterization of our two rankings of sets.

To the best of our knowledge, Pattanaik and Xu (2000a) contribution,
also discussed in Bossert et al. (2002), is the only one that examines a
diversity-based ranking of sets of objects that refers explicitly to an a pri-
ori ordinal notion of similarity. However, the ordinal notion of similarity
assumed in these papers is rather crude. For it only allows objects to be
either pairwise dissimilar or pairwise similar. No intermediate categories
of similarities are allowed. With this �black and white� notion of similar-
ity, Pattanaik and Xu (2000a) characterizes a ranking of sets based on the
number of elements contained in the smallest (with respect to the number
of elements) partition of the sets in subsets of similar objects. According to
their ranking, set A is at least as diverse as set B if, and only if, the smallest
partition of the set into subsets of similar objects is at least as large in A
as in B. While very interesting as a Þrst step in the process of building a
diversity ranking of sets based on an ordinal notion of similarity, this result
suffers obviously from the paucity of the information conveyed by the �black
and white� notion of similarity used.

In this paper we characterize axiomatically two diversity rankings of sets
based on an ordinal primitive notion of similarity that is not assumed to be
�black and white�. Rather, the primitive notion of similarity used is an
abstract quadernary relation (or a binary relation on the set of all pairs of
objects) that is only restricted to be reßexive, transitive and complete as well
as to satisfy a weak form of symmetry. Using this notion, the Þrst ranking
that we characterize is themaxi-max criterion that compares sets by looking,
for each set, at the pair of objects that are the most dissimilar (according
to the primitive notion of similarity) and by comparing these pairs on the
basis of their similarity, the more dissimilar are these maximally dissimilar
object, the more diverse is the set. The other ranking characterized in this
paper is the lexi-max criterion that is deÞned, as usual, as the lexicographic
extension of the maxi-max criterion. It therefore compares any two sets by
means of the following recursive operation. Take for each set its pair of most
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dissimilar objects and compare these two pairs in terms of dissimilarity. If
one pair is more dissimilar than another, rank the set from which the pair
is taken more diverse than the other. If the two pairs are equally dissimilar,
look, in each set, for the pair of object that is ranked second in the scale of
dissimilarity and compare the two pairs thus extracted. If one pair is more
dissimilar than the other, rank the set from which the more dissimilar pair
is extracted above the other. In case of a tie, look in each set for the third
pair of objects on the scale of similarity and so on. Eventually, one either
achieves a strict ranking of two pairs of objects (one pair per set) in terms
of dissimilarity and ranks accordingly the corresponding sets or exhausts all
possible pairs of objects that one can form in one of the two sets, in which
case it considers more diverse the set that contains the most elements.

While these two rankings, and especially the second one, are of some in-
trinsic interest for the problem at hand, we believe that the general method-
ology employed for obtaining a consistent method for appraising diversity
based on a primitive ordinal conception of similarity is more important than
the rankings themselves. It is therefore our hope that this approach will re-
ceive more attention than it had in the literature and that our paper will
contribute to this.

The rest of this paper is organized as follows. The next section presents
the notation and the formal deÞnitions of the axioms and the rankings char-
acterized. Section 3 presents the characterization results and section 4 con-
cludes.

2 Notations and deÞnitions

Let X be a Þnite set of options (living individuals, type of means of trans-
portations, opinions expressed in newspapers, etc.) and P(X) be the set of
all non empty subsets of X with generic elements A, B,.... We denote by |A|
the cardinality of the set A and by P (A) = A × A the set of all pairs one
can form with the elements of A. Of course, |P (A)| = |A|2 .

At the basis of our approach is a quadernary relation R on X (alterna-
tively, a binary relation on X×X) (with asymmetric and symmetric factors
P and I respectively) which reßects ordinal knowledge about the dissimilar-
ity that exists between options. In this light, the statement (w, z) R (x, y)
is interpreted as meaning �the objects w and z are at least as dissimilar as
the objects x and y�. To motivate this interpretation, we assume through-
out that (x, y) R (x, x) for every distinct objects x and y and that (x, x)
I (y, y) (that is, two distinct objects are always weakly more dissimilar
than are one of the two objects and itself, and pairs of identical objects
are just equally similar). These two properties would clearly hold true if,
as Weitzman (1992) or Bossert et al. (2002), we would accept to go as far
as measuring the dissimilarity by a (cardinally measurable) distance func-

5



tion d : X ×X → R. We assume further that R is symmetric in the sense
that (x, y) R (y, x) holds for every objects x and y, is complete (i.e. either
(x, y) R (w, z) or (w, z) R (x, y) holds for every (not necessarily distinct)
x, w, y, z ∈ X and is transitive (i.e. for every (not necessarily distinct) ob-
jects u, v, x, w, y, z ∈ X , (x, y) R (w, z) and (w, z) R (u, v) must always
imply (x, y) R (u, v). The reader can easily verify that these properties are
satisÞed by the ranking of pairs of objects induced by conventional distance
function d (in particular d is conventionally assumed to be symmetric). In
order to simplify some of the proofs, we further assume that R is such that
(x, y) P (x, x) for every two distinct x and y (two distinct options are al-
ways strictly more dissimilar than one of the two options and itself). We
let R denote the set of all ordinal quadernary relations that satisfy all these
properties. We record the obvious following fact (whose obvious proof is
omitted).

Fact 1 If R is a dissimilar quaternary relation in R, then, for all distinct
x and y ∈ X, and for all z ∈ X, (x,y) P (z,z)

Using R, one can order, for any set A ∈ P(X), the pairs in P (A) to form
the ordered |A|2-dimensional vector of pairs Z(A) deÞned as follows:

Z(A) = (a(1), a(2), ..., a(|P (A)|))
where a(1) = (x, y) for some x and y in A denotes the �greatest� (or

most dissimilar) pair according to R
a(2) denote the second �greatest� pair according to R,
...
a(|P (A)|) denote the �smallest� pair according to R.

Remark 1 As R is symmetric, there is some arbitrariness in constructing
the vector Z(A) (the order of appearance of any two symmetric pairs (x, y)
and (y, x) is obviously irrelevant). In the same vein, we also know, thanks to
fact 1, that the |A| last pairs of the vector Z(A) are precisely the duplications
of the |A| elements of A.

We let º (with asymmetric and symmetric factors Â and ∼ respectively)
be a transitive binary relation onP(X) that aims at reßecting the evaluation
of the diversity offered by alternatives sets of objects in P(X). We interpret
the statement A º B as meaning �the set A offers at least as much diversity
as the set B�

We wish to propose plausible properties (axioms) that º could satisfy
to serve as a sensible method for appraising diversity, taking as given the
ordinal conception of dissimilarity reßected in R. In order to formulate
these, we deÞne, for any set of objects A ⊆ X, and for any pair of objects
x, y ∈ X, the set PA(x, y) ⊆ A ×A of all pairs of objects in A that are at
least as dissimilar as the objects x and y. This deÞnition is as follows.
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DeÞnition 1 PA(x, y) = {(a, a0) ∈ A×A : (a, a0) R (x, y)}

Without loss of generality, we write the pairs of PA(x, y) in decreas-
ing order of dissimilarity so that PA(x, y) = {a(1), ..., a |(PA(x,y)|} (where
a(i) ∈ A × A for all i = 1, ..., |(PA(x, y)| with a(j) R a(j+1) for all j =
1, ..., |(PA(x, y)| − 1}. We now present the axioms used in the characteri-
zations by what seems in our view to be their decreasing order of intuitive
plausibility.

Axiom 1 ∀ w, x, y, z ∈ X, (w, z) R (x, y) ⇐⇒ {w, z} º {x, y}

Axiom 2 ∀ A, B ∈ P (X), if A ⊇ B, then A º B..

Axiom 3 ∀ A, B, C and D ∈ P(X) such that B∩ C = B∩ D = C∩D = ∅,
(A % B∪C, A % B∪D and A % C∪D) =⇒ A % B∪C∪D and (A Â (B∪C),
A Â (B ∪D) and A Â (C ∪D)) =⇒ A Â (B ∪C ∪D)

Axiom 4 ∀ A, B ∈ P(X) such that |A| = |B| a(i) R b(i) ∀ i with a(i) ∈
Z(A) and b(i) ∈ Z(B) =⇒ A º B

Axiom 5 For all w, x, y, z ∈ X, if {w, z} Â {x, y} and C, D ∈ P(X) are
such that¯̄

PC ∪{w,z}(w, z)
¯̄

=
¯̄
PD∪{x,y}(x, y)

¯̄
and a(i) R b(i) for a(i) ∈ PC ∪{w,z}(w, z)

and b(i) ∈ PD∪{x,y}(x, y) for all i ∈ {1, ...,
¯̄
PC ∪{w,z}(w, z)

¯̄} then C ∪
{w, z} Â B ∪ {x, y}.

Axiom 1 just says that the ranking of pairs in terms of diversity must
coincide with the ranking of the pairs in terms of dissimilarity as per the
quadernary relation R. It is difficult to imagine a diversity-ranking of sets
based on an a priori notion of dissimilarity between options that would vi-
olate this axiom. Axiom 2 is the widely discussed (at least in the freedom
of choice literature mentioned in introduction) axiom of weak monotonicity
with respect to set inclusion. It is also a hardly disputable axiom in the con-
text of diversity measurement. For it is quite difficult to imagine a plausible
conception of diversity that would consider that adding an object to a set
could strictly reduce its diversity. Axiom 3 is certainly more disputable than
the two preceding ones but is not unreasonable. Consider two sets A and B
such that A is considered more diverse (weakly or strictly) than B. Consider
then two processes of adding a bunch of options to B. One process consists
in adding to B options collected into a set C while the other process consists
in adding to B options gathered into some other set D (disjoint from C).
Assume that the enlargement of diversity offered by B as a result of either
of these two process is insufficient to reverse the relative ranking of the en-
larged set with respect to A. In a situation like this, the axiom requires
that, if A offers weakly or strictly more diversity than that provided by all
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options added to B by the two processes, then A should also be considered
(weakly or strictly) more diverse than B enlarged by all objects in the two
sets C and D. To give a somewhat more intuitive example, assume that A
consists in all currently living creatures categorized as mammals, B con-
tains all cartilagineous Þshes, C contains all osseous Þshes and D consists in
all batracians. Axiom 3 would then require that if the diversity offered by
mammals is larger than that offered by all Þshes (cartilaginous and osseous),
is larger than that offered by cartilagineous Þshes and batracians and is also
larger than that offered by all batracians and osseous Þsh, then the set of all
mammals should also be considered more diverse than the set of all Þshes
and batracians.

Axiom 4 connects, for sets that contain the same number of options, the
judgements made with respect to the dissimilarity of their options and those
with respect to their relative standing in terms of diversity. As sets with the
same number of options have obviously the same number of pairs, the ladder
of pairs from the most dissimilar to the least dissimilar in the sets Z deÞned
above will obviously have the same number of steps. Axiom 4 requires in
such a case that if, for every step, the corresponding pair is weakly more
dissimilar in A than in B, then A should be considered weakly more diverse
than B.

Axiom 5 is, probably, the more difficult to accept (and to understand). It
says that if a pairs of objects is considered strictly more diverse (or dissimilar
if axiom 1 is assumed) than another, then this ranking should be robust to
a certain form of addition of options in each set. The restriction imposed
on the addition of options is that all newly created pairs of options that are
weakly more dissimilar, in each set, to the initial pair should be related, pair
by pair, by a dominance relation with respect to dissimilarity. Here again, an
example may help. Assume that the diversity ranking of sets considers the
pair {bee,chimpanzee} to be strictly more diverse than the pair {kokanee
salmon, rainbow trout}. Suppose we add a ßy to the Þrst set and a brown
trout to the second set and assume that the following (plausible) dissimilarity
statements hold with respect to the living individuals:

1) the chimpanzee is weakly more similar to the bee than to the ßy,
2) the bee is weakly more similar to the ßy than to the chimpanzee,
3) a kokanee salmon is weakly more dissimilar to the brown trout than

it is to the rainbow trout
4) brown and rainbow trouts are more similar than the rainbow trout

and the kokanee salmon
5) the chimpanzee and the ßy are more dissimilar than the kokanee

salmon and the brown trout.
We note that, in this example, there is only one pair of objects that

are weakly more diverse than the original pair in each set. These pairs are
(chimpanzee, fly) for the Þrst set and (brown trout, kokanee salmon)
for the second. We note also that the Þrst of these pairs is more diverse
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than the second one. Axiom 5 would then require the set {bee, chimpanzee,
fly}to be strictly more diverse than the set {brown trout, kokanee salmon,
rainbow trout}. Although not as transparent as one would like, axiom 5 is
not unreasonable. It roughly requires the ranking of two pairs in terms of
diversity to remain if an increase in diversity is, in a precise sense, larger in
the dominating set than in the dominated one.

We now formally deÞne the two speciÞc rankings of sets that we charac-
terize by these axioms in the next section. The Þrst of these rankings is the
maxi-max criterion that ranks sets according to the relative dissimilarities
of their most dissimilar pairs. This ranking %maxis deÞned as follows.

DeÞnition 2 For all A, B ∈ P(X), A ºmax B ⇐⇒ a(1) R b(1)

To illustrate, suppose that X is the set of all means of transportation
available to perform a certain trip between two cities deÞned speciÞcally as
X = {train, volkswagen, lada,bike, foot}. Assume also that the ordinal
notion of dissimilarities between these means of transportations is given
by the quadernary relation R deÞned by (train,foot) I (volkswagen,foot)
P (lada,foot) P (train,bike) I (volkswagen,bike) P (lada, bike) P (train,
volkswagen) P (train, lada) P (bike,foot) P (volkswagen,lada). Then the
maxi-max criterion would consider that the set {train, foot} offers just as
much diversity as the set {train, volkswagen, lada, bike, foot}, a judgement
which may sounds at odd with one�s intuition of what is diversity. Its biggest
weakness is obviously that it only focus on the two most dissimilar objects
in the sets and it ignores completely the contribution to diversity made by
the presence of less dissimilar objects. The lexi-max criterion %lexdeÞned as
follows avoids to some extent this weakness.

DeÞnition 3 For all A, B ∈ P(X), A Âlex B ⇐⇒ either there ex-
ists some k ∈ {1, ..., min(|A|2 , |B|2)} such that a(k) P b(k) and a(i) I b(i)

for i = 1, ...k − 1 or |A| > |B| and a(i) I b(i) for i = 1, ..., |B|2 and
A ∼lex B ⇐⇒ |A| = |B| and a(i) I b(i) for i = i = 1, ..., |B|2

Albeit this ranking expresses some sensitivity with respect to the contri-
butions of options that are not maximally dissimilar to diversity (for instance
by considering that the set {train, volkswagen, lada, bike, foot} is strictly
more diverse than the pair {train, foot}), this sensitivity is not as great as
one would like. For it nonetheless gives a �veto power� to the most dissimi-
lar two objects in the sets with respect to the appraisal of their diversity. In
the example above, the set {train, foot} would be considered strictly more
diverse than the set {train, lada, bike} as per the criterion %lexeven though
this judgement may hurt the intuition of someone who nonetheless accepts
the notion of dissimilarity R assumed in this example.

It would therefore be nice to have a diversity ranking that enables more
trade-off between the contributions of alternative pairs of options to diversity
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than what is allowed by the two diversity orderings characterized in this
paper.

We now turn to this characterization.

3 Characterization Results

We Þrst provide the characterization of ºmaxby means of axioms 1-3.

Theorem 1 Let º be transitive binary relation defined on P(X) and let R
be an ordinal notion of similarity belonging to R. Then º satisfies Axioms
1 to 3 if and only if º = ºmax

Proof. Necessity. It is immediate to see that the transitive binary
relation ºmaxsatisÞes axioms 1 and 2. As for axiom 3, suppose that A ºmax

B ∪ C = E, A ºmax B ∪ D = F and A ºmax C ∪ D = G and let H =
B∪C∪D. Then a(1) R e(1), a(1) R f(1) and a(1) R g(1) for a(1), e(1), f(1)

and g(1) denoting respectively the Þrst component of the vectors Z(A), Z(E),
Z(F ) and Z(G). We therefore have a(1) R maxR(e(1), f(1), g(1)) which clearly
implies that A ºmax H.

Sufficiency We show Þrst that if º is transitive and satisÞes axioms 1
to 3, then we have, for every A and B ∈ P(X), A º B =⇒ A ºmax B.
Suppose A º B. By axiom 2, we have B º ©

b(1)

ª
and by transitivity,

A º ©
b(1)

ª
. If |A| = 2, A =

©
a(1)

ª
, so

©
a(1)

ª º ©
b(1)

ª
and by axiom 1,

a(1) R b(1), which means A ºmax B. If |A| > 2, write A = {a1, ..., a|A|} and
assume by contradiction that a(1) R b(1) is false. Since R is complete, this
amounts to assuming that b(1) P a(1) and, therefore, that b(1) P (ai, aj) for
all i, j ∈ {1, ..., |A|}. Pick up any option a1 in A and let b(1) = (b1, b2).
One thus has, by axiom 1, that {b1, b2} Â {a1, ai}, {b1, b2} Â {a1, aj} and
{b1, b2} Â {ai, aj} for all i, j ∈ {1, ..., |A|}. By axiom 3, we must have
{b1, b2} Â {a1, ai, aj}. Redoing the same procedure while replacing the
option aj by some option ah ∈ A, one obtains that{b1, b2} Â {a1, ai, ah}.
Using axiom 3 again and the fact that {b1, b2} Â {aj , ah}, one is led to
the conclusion that {b1, b2} Â {a1, ah, ai, aj}. Redoing the last procedure
if necessary while replacing ah by ag ∈ A, one can analogously obtain the
statement {b1, b2} Â {a1, ag, ai, aj} and combining the last two statements
and the fact that {b1, b2} Â {ag, ah}, one obtains again by axiom 3 that
{b1, b2} Â {a1, ag, ah, ai, aj}. This procedure can clearly be repeated with
as many options in A is needed to Þnally obtain the required contradictory
conclusion that B º {b1, b2} Â A. We now show that if º is transitive
satisÞes axioms 1 to 3, then we have A ºmax B =⇒ A º B. Suppose
A ºmax B. Then a(1) R b(1) where a(1) and b(1) are the Þrst components of
the vectors Z(A) and Z(B) respectively..Let |B| = m, B = {b1, b2, ..., bm},
a(1) = (a1, a2) and b(1) = (b1, b2). If m = 2, then {a1, a2} º {b1, b2} and,
by axiom 2, A º ©

a(1)

ª
, so that A º B. For more general cases, we show
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the result by induction. For that purpose, we start with the case m = 3.
Because a(1) R b(1), we have a(1) R (b1, b2), a(1) R (b1, b3) and a(1) R (b2, b3).
Using axiom 1, we can write {a1, a2} º {b1} ∪ {b2} , {a1, a2} º {b1} ∪ {b3}
and {a1, a2} º {b2} ∪ {b3} . By axiom 3, it follows that {a1, a2} º {b1} ∪
{b2} ∪ {b3} and by axiom 2, that A º {b1, b2, b3} = B. The case m = 3 is
then proved. Now suppose the result is true for any m ∈ {3, ..., |X| − 1}.
That is, suppose that if A is a set inP(X) and B is another set inP(X) such
that |B| = m, then A ºmax B =⇒ A º B and suppose A ºmax B0 where
B0 = B ∪ {bm+1}. Let B = {b1, b2, ..., bm−1} , C = {bm} and D = {bm+1} .
By hypothesis, A º B ∪ C. Because a(1) R b0(1), we have a(1) R (bm, bm+1),

so A º C ∪ D. Finally, let B00 = B ∪ D. Then b0(1) R b00(1) and a(1) R b00(1).
We therefore have thatA ºmax B00. Yet |B00| = m so that, by the induction
hypothesis, we have A º B00. By axiom 3, we have A º B ∪ C, A º B ∪D
andA º C ∪D, so that A º B ∪C ∪D, and this concludes the proof.

We Þrst remark that, albeit this was not required, we obtain the com-
pleteness of the ranking as a by-product of the three axioms. It is also worth
noticing that the characterization of ºmaxis obtained from the (reasonably)
intuitive axioms 1 to 3 that only uses properties of sets. Only axiom 1 makes
the connection between the ranking of speciÞc sets - the pairs - and the un-
derlying notion of dissimilarity R. Unfortunately the characterization of the
more interesting ºlexcriterion is obtained from the axioms 1,4 and 5, all of
which are explicitly based on the properties of the pairs of the sets.

Before turning to this characterization, we show that axioms 1 to 3 used
to characterize ºmaxare independent.

Proposition 1 Axioms 1 to 3 are independent.

Proof. Letº∗be deÞned by: A º∗ B ⇐⇒ b(|P (B)|−|B|) R a(|P (A)|−|A|). This
transitive and complete binary relation on P(X) considers that A offers
at least as much diversity as B if and only if the two most similar dis-
tinct objects in B are weakly more dissimilar than the most similar dis-
tinct objects in A. It is certainly a peculiar criterion for comparing sets
on the basis of their diversity. It is immediate to see that º∗violates
axiom 1 and that it satisÞes axiom 2. To see that º∗satisÞes axiom 3,
assume that A º∗ B ∪ C, A º∗ B ∪ D and A º∗ C ∪ D. Then one
has b(|P (B∪C)|−|B∪C|) R a(|P (A)|−|A|), b(|P (B∪D)|−|B∪D|) R a(|P (A)|−|A|) and
b(|P (C∪D)|−|C∪D|) R a(|P (A)|−|A|). Clearly, since either

b(|P (B∪C∪D)|−|B∪C∪D|) = b(|P (B∪C)|−|B∪C|),
b(|P (B∪C∪D)|−|B∪C∪D|) = b(|P (B∪D)|−|B∪D|) or

b(|P (B∪C∪D)|−|B∪C∪D|) = b(|P (C∪D)|−|C∪D|)

one has

b(|P (B∪C∪D)|−|B∪C∪D|) R a(|P (A)|−|A|)

11



and, therefore, A º∗ B ∪ C ∪D. Now let ºDbe deÞned by A ºD B ⇐⇒
a(|P (A)|−|A|) R b(1). This ordering says that A offers at least as much diversity
as B if and only if the two most similar distinct object in A are at least as
dissimilar as any pairs of objects in B. It is immediate to see that ºD

satisÞes axioms 1. To see that it veriÞes axiom 3, assume that A ºD (B ∪
C) = E, A ºD (B∪D) = F and A ºD C∪D = G. Then a(|P (A)|−|A|) R e(1),
a(|P (A)|−|A|) R f(1) and a(|P (A)|−|A|) R g(1) and, therefore, a(|P (A)|−|A|) R h(1)

where H = B ∪C ∪D and e(1), f(1) g(1) and h(1) denote, respectively, the
Þrst components of the vectors Z(E), Z(F ), Z(G) and Z(H). To see that
ºDviolates axiom 2, let A = {a1, a2} and B = {a1, a2, a3} and assume
that R is such that (a1, a2) P (a1, a3) R (a2, a3). Clearly, a(1) = (a1, a2),
b(|P (B)|−|B|) = (a2, a3) and, therefore B ² A. Finally, let ºaddbe deÞned

by:A ºadd B ⇐⇒
|A|2P
i=1

v(a(i)) ≥
|B|2P
i=1

v(b(i)) for some function v ∈ X×X → R+

such that, for all (w, z), (x, y) ∈ X ×X, v(w, z) ≥ v(x, y) ⇔ (w, z) R (x, y).
Such an ordering clearly satisÞes axioms 1 and 2. Yet, it may violates axiom
3 if, for instance, X = {w, x, y, z} and v is such that v(w, z) = 7, v(w, y) = 5,
v(w, x) = 3 = v(x, y). In such a case, deÞningA = {w, z}, B = {w}, C = {y}
and D = {x}, one has A ºadd B ∪C ⇔ 7 ≥ 5, A ºadd B ∪D ⇔ 7 ≥ 3 and
A ºadd C ∪D ⇔ 7 ≥ 3. Yet A ≺add B ∪ C ∪D as v(w, z) = 7 < v(w, y)+
v(w, x) + v(x, y) = 11.

We now turn to the axiomatic characterization of ºlex.

Theorem 2 Let º be a transitive binary relation on P(X) and let R be an
ordinal notion of similarity belonging to R. Then º satisfies Axioms 1, 4
and 5 if and only if º = ºlex

Proof. It is immediate to verify that ºlex, a transitive and complete bi-
nary relation on P(X), satisÞes axioms 1, 4 and 5. Assume now that A Âlex

B. Then, by deÞnition, either there exists a k ∈ {1, ..., min(|A|2 , |B|2)}
such that a(k) P b(k) and a(i) I b(i) for i = 1, ...k − 1 or |A| > |B| and
a(i) I b(i) for i = 1, ..., |B|2 . We can not be in the later case because, as
noticed above (remark 1), the |A| last pairs of the vector Z(A) are the
duplications of the |A| elements of A while the |B| last pairs of the vec-
tor Z(B) are the duplications of the |B| elements of B. As |A| > |B|,
and (x, y) P (z, z) for every x, y, z ∈ X (with x 6= z), this implies the
existence of a component k of the vector Z(A) and Z(B) such that a(k)

P b(k). Assume therefore that we are in the case where there exists a
k ∈ {1, ..., min(|A|2 , |B|2)} such that a(k) P b(k) and a(i) I b(i) for i =

1, ...k − 1. Writing a(k) = (ak
0, ak

1) and b(k) = (bk
0, bk

1) (with ak
j ∈ A and

bk
j ∈ B for every k ∈ {1, ..., min(|A|2 , |B|2)}, j = 0, 1) we have by axiom 1
that {ak

0, ak
1} Â {bk

0, bk
1}. Let C = A\{ak

0, ak
1} andD = B \ {bk

0, bk
1}. C andD

are clearly like the sets of axiom 5. In particular, one has
¯̄̄
P{ak

0 ,ak
1}∪C(a(k))

¯̄̄
=
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¯̄̄
P{bk

0 ,bk
1}∪D(b(k))

¯̄̄
and a(i) I b(i) if a(i) ∈ P{ak

0 ,ak
1}∪C(a(k)) and b(i) ∈ P{bk

0 ,bk
1}∪D(b(k)).

By application of axiom 5, we obtain A Â B.Suppose now A ∼lex B. Then
a(i) R b(i) ∀ i and b(i) R a(i) ∀ i and |A| = |B|.By axiom 4, we then have
A º B and B º A which entails A ∼ B. Now, we have to show that if
º is transitive and satisÞes axioms 1, 4 and 5, then we have, for every A
and B ∈ P (X), A º B =⇒ A ºlex B. Assume by contradiction that the
implication is false. Then, since ºlexis complete, this amounts to say that
B Âlex A holds which, by virtue of what we just established, implies that B
Â A, a contradiction.

Although a characterization of %lexwhich would use axioms that refer
to elements of the sets rather than to pairs of elements would be more
elegant, such an axiomatization is not easy to obtain. The leximax criterion is
clearly an ordering in which the precise positions occupied by the pairs in the
dissimilarity scale matters a great deal. Yet, it is difficult to axiomatically
control these positions by simply using properties of the single elements.
For instance, adding elements in the way suggested by axiom 3 does not do
because the whole ranking of pairs in the set is severely affected by these
additions.

We conclude this section by proving that axioms 1, 4 and 5 are indepe-
dent.

Proposition 2 Axioms 1, 4 and 5 are independent.

Proof. Consider Þrst ºaddas deÞned in the proof of proposition 1. It
satisÞes as we have seen axiom 1 and it is not hard to see that it also
satisÞes axiom 4. To see that it violates axiom 5, consider X = {w, x, y, z}
and assume that the function v which deÞnes ºaddis such that v(w, z) =
7, v(w, y) = 5, v(w, x) = 3, 2 = v(x, y) = v(x, z) and v(y, z) = 0. In
such a case, we have that {w, y} Â {w, x} and C = {z} = D are just
as in the antecedent of axiom 5 (with P{w,y,z}(w, y) = {(w, z), (w, y)} and
P{w,x,z}(w, x) = {(w, z), (w, x}). Yet {w, y, z} ¹ {w, x, z} since 7 + 5 + 0 ≤
7 + 3 + 2 in contradiction of the consequence of axiom 5. Consider now
the widely discussed cardinality ordering %CARDdeÞned by A %CARD B ⇔
|A| ≥ |B|. This ordering obviously violates axiom 1 for any dissimilarity
notion contained in R. It satisÞes however axiom 4 and, trivially, axiom 5
(whose antecedent never applies when there is universal indifference between
all pairs of objects. Consider Þnally the incomplete transitive binary relationbºlex deÞned by A bºlex B ⇐⇒ A Âlex B. As can be seen in the proof of
theorem 2, this binary relation satisÞes axioms 1 and 5. Yet it fails to satisfy
axiom 4 (since bºlex considers as non comparable any two sets, such as those
mentioned in axiom 3, that would be considered indifferent by ºlex.
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4 Conclusion

The purpose of this paper was to investigate the possibility of deriving ax-
iomatic ranking of sets of objects on the basis of their diversity by using only
an ordinal primitive information about the similarities of the objects. This
approach is to be contrasted with the most recent sophisticated ones such
as those proposed by Weitzman (1992),Weitzman (1993), Weitzman (1998),
Nehring and Puppe (2002) or Bossert et al. (2002) which assume a cardi-
nally measurable primitive notion of similarities. While this investigation
has been proved successful, we are aware that the speciÞc rankings which we
have characterize in this paper are far from perfect. As mentioned earlier, a
basic ßaw with these two rankings is that they do not allow smooth trade off
between the contributions of alternative pairs of objects to diversity. Both
rankings give a very large �veto power� to the two most dissimilar options
in the sets to compare the relative diversity that they offer. It would be nice
to obtain �smoother� rankings of sets than the two characterized in this
paper. An interesting class of these rankings would be an additive one, a
typical member of which would view the diversity of as set as the sum of
values assigned to each of its pairs by a function that numerically represent,
in the sense of Debreu (1954), the binary relation R deÞned on X × X.
An example of such a ranking is the ordering ºaddconsidered in the proof
of proposition 1. Finding an axiomatic characterization of such a family of
diversity ranking is worthwhile objective for further research. Another one is
to try to relate the measurement of diversity with that of freedom of choice.
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