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1.  Introduction 

We study the management of a natural resource that serves a dual purpose: first, 

it supplies inputs for human production activities and is therefore being exploited for 

beneficial use, however defined; second, it supports the existence of other species.  

Large-scale exploitation competes with the needs of the wildlife populations and, 

unless controlled, can severely degrade the ecological conditions and lead to species 

extinction and biodiversity loss.  Examples for such conflicts abound, including:  

(i) water diversions for irrigation, industrial or domestic use reduce in-stream flows 

that support the existence of various fish populations; (ii) reclamation of swamps and 

wetlands that serve as habitat for local plant, bird and animal populations and as a 

"rest area" for migrating birds; (iii) deforestation reduces the living territory of a large 

number of species; and (iv) airborne industrial pollution falls as acid rain on lakes and 

rivers and interferes with systems of freshwater ecology.  In these examples the 

affected species may not contribute directly to human well being but their diminution 

or extinction entails a loss due to use and nonuse values as well as the loss of option 

for future benefits such as the development of new medicines (about half of medicine 

prescriptions originate from organisms found in the wild [Littell 1992, Bird 1991]).   

The global deforestation example illuminates the issue under consideration.  

Until recently, a rainforest area about the size of England was cleared each year 

(Hartwick, 1992), leading to the extinction of numerous species (Colinvaux 1989).  

The biodiversity loss process often takes the form of a sudden collapse of the 

ecological system, inflicting a heavy damage and affecting the nature of future 

exploitation regimes.  This is so because ecological systems are inherently complex 

and their highly nonlinear dynamics give rise to instabilities and sensitivity to 

threshold levels of essential supplies.  Moreover, ecological systems are often 
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vulnerable to environmental events, such as forest fires, disease outbreaks, or 

invading populations, which are genuinely stochastic in nature.  We refer to the 

occurrence of a sudden system collapse as an ecological event.   

When the biodiversity loss process is gradual and can be monitored and 

controlled by adjusting exploitation rates, and/or when it involves a discrete 

ecological event whose occurrence conditions are a-priori known, it is relatively 

simple to avoid the damage by ensuring that the event will never occur.  Often, 

however, the conditions that trigger ecological events involve uncertainty and the 

corresponding management problems should be modeled as such.  The present study 

characterizes optimal resource exploitation policies under risk of occurrence of 

various types of events.   

Impacts of event uncertainty on resource exploitation policies have been 

studied in a variety of situations, including pollution-induced events (Cropper, 1976, 

Clarke and Reed, 1994, Tsur and Zemel, 1996, 1998b, Aronsson et al., 1998), forest 

fires (Reed, 1984, Yin and Newman, 1996), species extinction (Reed, 1989, Tsur and 

Zemel, 1994), seawater intrusion into coastal aquifers (Tsur and Zemel, 1995), and 

political crises (Long, 1975, Tsur and Zemel, 1998a).  Occurrence risk typically leads 

to prudence and conservation, but in some cases has the opposite effect, encouraging 

aggressive extraction policies in order to derive maximal benefit prior to occurrence 

(Clarke and Reed, 1994).   

Tsur and Zemel (1998b, 2004) trace these apparently conflicting results to 

different assumptions concerning the event occurrence conditions and the ensuing 

damage they inflict.  An important distinction relates to the type of uncertainty.  An 

event is called endogenous if its occurrence is determined solely by the resource 

exploitation policy, although the exact threshold level at which the event is triggered 
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is not a-priori known.  This type of uncertainty is due to our partial ignorance of the 

occurrence conditions and allows to avoid the occurrence risk altogether by keeping 

the resource stock at or above its current state.  Exogenous events, on the other hand, 

are triggered under environmental circumstances that are genuinely stochastic and 

cannot be fully controlled by the resource managers.  With this type of events, no 

exploitation policy is completely safe although the managers can affect the occurrence 

hazard by adjusting the stock of the essential resource. 

We show that the endogenous-exogenous distinction bears important 

implications for optimal exploitation policies and alters properties that are considered 

standard.  For example, the optimal stock processes of renewable resources typically 

approach isolated equilibrium (steady) states.  This feature, it turns out, no longer 

holds under endogenous event uncertainty: the equilibrium point expands into an 

equilibrium interval whose size depends on the expected loss, and the eventual steady 

state is determined by the initial stock.  Endogenous events, thus, can be the source of 

hysteresis phenomena.  In contrast, exogenous events maintain the structure of 

isolated equilibria and the effect of event uncertainty is manifest via the shift it 

induces on these equilibrium states. 

2.  Certain Events 

 We consider the management of some environmental resource that is essential 

to the survival of an ecological system (or of a key species thereof) and at the same 

time provides an important production factor for anthropogenic activity.  The stock S 

of the resource can denote the area of uncultivated land of potential agricultural use, 

the water level at some lake or stream or the level of cleanliness (measured e.g. by the 

ph level of a water resource affected by acid rain or by industrial effluents).  Without 

human interference, the stock dynamics is determined by the natural regeneration rate 
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G(S) (corresponding to the recharge of the water resource or to the decay rate of the 

pollution stock).  The functional form of G depends on the particular resource under 

consideration, but we assume the existence of some upper bound S for the stock, 

corresponding to the lake's holding capacity or to the natural cleanliness level, so that 

0)( =SG  and 0)( ≤′ SG .  With xt representing the rate of resource use (extraction), 

the resource stock evolves with time according to   

tttt xSGSdtdS −=≡ )(/ & . (2.1)

Extraction activities can have several consequences.  First, they give rise to a 

benefit flow (from the use of land and water or from the economic activities that 

produce the pollutants) at the rate Y(x), where Y is increasing and strictly concave with 

Y(0) = 0.  Second, they bear the cost C(S)x of extracting at the rate x while the stock 

level is S, where the unit cost C(S) is nonincreasing and convex.  In addition, reducing 

the stock level entails damage to the ecological system that depends on the same 

resource for its livelihood.  The latter damage flows at the rate D(S), where the 

decreasing damage function D is normalized at 0)( =SD .  The instantaneous net 

benefit is then given by Y(x) − C(S)x − D(S).  Finally, reducing the stock below some 

(possibly a-priori unknown) threshold level can trigger the sudden collapse of the 

ecological system, inflicting a heavy penalty in terms of biodiversity loss and 

affecting the nature of future exploitation regime.  We begin by considering the 

reference problem of optimal extraction when the conditions under which such 

catastrophic events occur are known, and proceed to study the effects of uncertainty 

under various scenarios regarding their occurrence conditions. 

Suppose that driving the stock to some critical level Sc triggers the occurrence 

of some catastrophic event, e.g., a major loss of biodiversity due to habitat destruction 
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which entails a penalty ψ > 0 and prohibits any further decrease of the resource stock.  

The corresponding post-event value is φ(Sc) = W(Sc) − ψ, where  

W(S) = [Y(G(S)) − C(S)G(S) − D(S)]/r  (2.2)

is the steady state value derived from keeping the extraction rate at the natural 

regeneration rate R(S) and r is the rate of discount.  The post-event value φ, thus, 

accounts both for the fact that the stock cannot be further decreased (to avoid further 

damage) and for the catastrophic loss.  Let T denote the event occurrence time (T = ∞ 

if the stock never shrinks to trigger the event at Sc).   

The management problem when the critical stock is known with certainty is 

specified as   

)()]()()([)(
0},{0 T

rTT rt
ttttxT

c SedteSDxSCxYMaxSV
t

φ−− +−−= ∫  (2.3)

subject to (2.1), xt ≥ 0; St ≥ 0; ST = Sc and S0 > Sc given.  Optimal processes associated 

with the certainty problem (2.3) are indicated with a c superscript.  The event 

occurrence is evidently undesirable, since just above Sc it is preferable to extract at the 

regeneration rate and enjoy the benefit flow rW(Sc) associated with it rather than 

trigger the event and bear the penalty ψ.  Thus, the event should be avoided,  

for all t and T = ∞.  It follows that the certainty problem can be formulated as  

c
c
t SS >

∫
∞ −−−=
0}{0 )]()()([)( dtexDxSCxYMaxSV rt

ttttx
c

t
 (2.4)

subject to (2.1), xt ≥ 0; St > Sc and S0 given.  Thus, the effect of the certain event enters 

only via the lower bound on the stock level.  This simple problem is akin to standard 

resource management problems and can be treated by a variety of optimization 

methods (see, e.g., Tsur and Graham-Tomasi, 1991; Tsur and Zemel, 1994, 1995, 

2004).  Here, we briefly review the main properties of the optimal plan.   



 7

We note first that because problem (2.4) is autonomous (time enters explicitly 

only through the discount factor) the optimal stock process  evolves monotonically 

in time.  The property is based on the observation that if the process reaches the same 

state at two different times, then the planner faces the same optimization problem at 

both times.  This rules out the possibility of a local maximum for the process, because 

the conflicting decisions to increase the stock (before the maximum) and decrease it 

(after the maximum) are taken at the same stock levels.  Similar considerations 

exclude a local minimum.  Since  is bounded in 

c
tS

c
tS ],SSc[  it must approach a steady 

state in this interval.  Using the variational method of Tsur and Zemel (2001), possible 

steady states are located by means of a simple function L(S) of the state variable, 

denoted the evolution function, which measures the deviation of the objective of  (2.4) 

from W(S) due to small variations from the steady state policy x = G(S) (see below).  

In particular, an internal state S ∈ (Sc, S ) can qualify as an optimal steady state only if 

it is a root of L, i.e. L(S) = 0, while the corners Sc or S  can be optimal steady states 

only if L(Sc) ≤ 0 or ,0)( ≥SL  respectively.  

For the case at hand, the evolution function corresponding to (2.4) is given by  









−−
′−

′−−′−= )]())(('[
)(

)()()('))(()( SCSGY
SGr

SDSGSCSGrSL . (2.5)

When )()0( SC<′Y , exploitation is never profitable.  In this case 0)( >SL  and the 

unexploited stock eventually settles at the capacity level S .  The condition for the 

corner solution L(Sc) < 0 is obtained from (2.5) in a similar manner.  Suppose that 

L(S) has a unique root  in [ScŜ c, S ] (multiple roots are discussed in Tsur and Zemel 

2001).  In this case,  is the unique steady state to which the optimal stock process 

 converges monotonically from any initial state.  

cŜ

c
tS
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The vanishing of the evolution function at an internal steady state represents the 

tradeoffs associated with resource exploitation.  If a steady state is optimal, then 

moving to a steady state nearby must inflict a loss.  Consider a variation on the steady 

state policy x =  in which exploitation is increased during a short 

(infinitesimal) time period dt by a small (infinitesimal) rate dx above  and 

retains the regeneration rate thereafter.  This policy yields the additional benefit 

, but decreases the stock by dS = −dxdt, which, in turn, 

increases the damage by , the unit extraction cost by C  and the 

extraction cost by G .  The present value of this permanent flow of 

added costs is given by [  (The effective 

discount rate equals the market rate r minus the marginal regeneration rate G′ because 

reducing the stock by a marginal unit and depositing the proceeds at the bank the 

resource owner gains the market interest rate r plus the additional regeneration rate 

−G′, see Pindyck 1984).  At the root of L, these marginal benefit and cost just balance, 

yielding an optimal equilibrium state.  

)ˆ( cSG

dxdtS c ))ˆ(

Ŝ(

)ˆ( cSG

dS)

CSGY c ))ˆ((( −′

Cc )

dSSD c )ˆ('

dSS c )ˆ(′

)ˆ( c GSD +′

S cˆ('

)).ˆ(/()]ˆ()ˆ( ccc SGrdSSCS ′−′

While the discussion above implies that the stock process must approach , the 

time to enter the steady state remains a free choice variable.  Using the conditions for 

an optimal entry time, one finds that the optimal extraction rate  smoothly 

approaches the steady state regeneration rate G and the approach of  towards 

the steady state  is asymptotic, i.e., the optimal stock process will not reach the 

steady state at a finite time.  These properties, as well as the procedure to obtain the 

full time trajectory of the optimal plan are explained in Tsur and Zemel (2004). 

cŜ

c
tx

)ˆ( cS c
tS

cŜ
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 The results obtained for an internal steady state do not depend on the critical 

state, nor on the penalty inflicted by the event, because the latter enters the certainty 

problem only via the constraint St > Sc  which is not binding when the root of L lies 

above the critical state.  However, with  the function L(S) is negative in the 

feasible interval 

c
c SS ˆ>

],SSc[ , hence no internal steady state can be optimal.  The only 

remaining possibility is the critical level Sc, because the negative value of L(Sc) does 

not exclude this corner state.  The optimal stock process , then, converges 

monotonically and asymptotically to a steady state at S

c
tS

c.  By keeping the process 

above the path it would follow if the state constraint St > Sc could be ignored, the 

threat of occurrence imposes prudence and a lower rate of extraction. 

 In this formulation the event is never triggered and the exact value of the 

penalty is irrelevant (so long as it is positive).  This result is due to the requirement 

that the post-event stock is not allowed to decrease below the critical level.  Indeed, 

this requirement can be relaxed whenever the penalty is sufficiently large to deter the 

managers from triggering the event in any case.  The lack of sensitivity of the optimal 

policy to the details of the catastrophic event is evidently due to the ability to avoid 

the event occurrence altogether.  This may not be feasible (or optimal) when the 

critical stock level is not a-priory known.  The optimal policy may, in this case, lead 

to unintentional occurrence, whose exact consequences must be accounted for in 

advance.  We turn, in the following section, to analyze the effect of uncertain 

catastrophic events on resource management policies. 

3.  Uncertain Events 

Often the conditions that lead to the event occurrence are imperfectly known 

and may be subject to environmental uncertainty outside the planner's control.  In 

some cases the critical level is a priori unknown, to be revealed only by the event 
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occurrence.  Alternatively, the event may be triggered at any time by external effects 

(such as unfavorable weather conditions or the outburst of a disease).  Since the 

resilience of the ecological system depends on the current resource stock, the 

occurrence probability also depends on this state.  We refer to the former type of 

uncertainty—that due to the planner's ignorance regarding the conditions that trigger 

the event—as endogenous uncertainty (signifying that the event occurrence is solely 

due to the exploitation decisions) and to the latter as exogenous uncertainty.  It turns 

out that the optimal policies under the two types of uncertainty are quite different.  

These policies are characterized below. 

3.1. Endogenous events:  Such events occur as soon as the resource stock 

reaches some critical level Sc, which is imperfectly known.  The uncertainty regarding 

the occurrence conditions, thus, is entirely due to our ignorance concerning the critical 

level rather than to the influence of exogenous environmental effects.  Let 

F(S) = Pr{Sc ≤ S} and f(S) = dF/dS be the probability distribution and the probability 

density associated with the critical level Sc.  The hazard function, measuring the 

conditional density of occurrence due to a small stock decrease given that the event 

has not occurred by the time the state S was reached, is defined by  

h(S) = f(S)/F(S).  (3.1)

We assume that h(S) does not vanish in the relevant range, hence no state below the 

initial stock can be considered a-priori safe.   

 The distribution of Sc induces a distribution on the event occurrence time T, as 

derived below.  Upon occurrence, the penalty ψ is inflicted and a further decrease in 

stock is forbidden, leaving the post-event value φ(S) = W(S)−ψ.  Given that the event 

has not occurred by the initial time, i.e., that T > 0, we seek the extraction plan that 

maximizes the expected benefit  
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





 >+−−= −−∫ 0)()]()()([)(

0}{0 TSedteSDxSCxYEMaxSV T
rTT rt

ttttTx
en

t
φ  (3.2)

subject to (2.1), xt ≥ 0; St ≥ 0 and S0 given, where ET represents expectation with 

respect to the distribution of T.  Optimal processes corresponding to the endogenous 

uncertainty problem (3.2) are denoted by the superscript en.  

 As the stock process evolves in time, the managers' assessment of the 

distributions of Sc and T can be modified since at time t they know that Sc must lie 

below }{~
0 ττ SMinS tt ≤≤=  (otherwise the event would have occurred at some time prior 

to t).  Thus, the expected benefit in the objective of (3.2) involves tS~ , i.e., the entire 

history up to time t, complicating the optimization task.  The evaluation of the 

expectation in (3.2) is simplified when the stock process evolves monotonically in 

time, in which case 0
~ SSt =  if the process is nondecreasing (and no information 

relevant to the distribution of Sc is revealed), or tt SS =
~  if the process is nonincreasing 

(and all the relevant information is given by the current stock St).  It turns out that the 

optimal stock process  evolves monotonically in time (Tsur and Zemel, 1994).  

This property extends the reasoning of the certainty case above:  If the process 

reaches the same state at two different times, and no new information on the critical 

level has been revealed during that period, then the planner faces the same 

optimization problem at both times.  This rules out the possibility of a local maximum 

for the process, because 

en

tS

tS

~  remains constant around the maximum, yet the conflicting 

decisions to increase the stock (before the maximum) and decrease it (after the 

maximum) are taken at the same stock levels.  A local minimum can also be ruled out 

even though the decreasing process modifies tS~  and adds information on Sc.  

However, it cannot be optimal to decrease the stock under occurrence risk (prior to 
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reaching the minimum) and then increase it with no occurrence risk (after the 

minimum), from the same state.    

For nondecreasing stock processes it is known in advance that the event will 

never occur and the uncertainty problem (3.2) reduces to the certainty problem (2.4).  

When the stock process decreases, the distribution of T is obtained from the 

distribution of Sc as follows:  

1 − FT(t) ≡ Pr{T > t|T > 0} = Pr{Sc < St|Sc < S0} = F(St)/F(S0). (3.3)

The corresponding density and hazard-rate functions are also expressed in terms of 

the distribution of the critical stock: 

(a)   )(/)]()[(/)()( 0SFSGxSfdttdFtf tttTT −== ,  

(b)   )]()[(
)(1

)()( ttt
T

T
T SGxSh

tF
tfth −=

−
= . 

(3.4)

Let I(⋅) denote the indicator function that obtains the value one when its 

argument is true and zero otherwise.  Writing the objective of (3.2) as 







 >+>−− −∞ −∫ 0)()()]()()([

0
TSedtetTISDxSCxYE T

rTrt
ttttT φ , we evaluate the 

expectation of the first term observing that ET{I(T > t)|T > 0} = 1 − FT(t) = F(St)/F(S0).  

The expectation of the second term is obtained, using (3.4), as 

∫∫
∞ −∞ − −=

0
0

0 )(
)()]()[()()( dte

SF
SSGxSfdteStf rtt

ttt
rt

tT
φφ .  Collecting the terms and 

using (3.1)-(3.3), the expectation in (3.2) for decreasing processes is evaluated to give   









−+−−

=

∫
∞ −

0
0

}{

0

)(
)()}()]()[()()()({

)(

dte
SF
SFSSGxShSDxSCxYMax

SV

rtt
ttttttttx

aux

t
φ

 (3.5)



 13

subject to (2.1), xt ≥ 0;  and Sne
t SS ˆ≥ 0 given.  The allocation problem for which (3.5) 

is the objective is referred to as the auxiliary problem, and optimal processes 

corresponding to this problem are denoted by the superscript aux.   

The auxiliary problem could be defined for all stock levels in ].,0 S[   

However, we show below that this problem is relevant for the formulation of the 

uncertainty problem (3.2) only for stock levels above the root  of L(S), hence 

replaces the depletion level (S=0) as the lowest feasible stock for (3.5).  

Formulated as an autonomous problem, the auxiliary problem also obtains an optimal 

stock process that evolves monotonically with time.  Notice that at this stage it is not 

clear whether the uncertainty problem (3.2) reduces to the certainty problem or to the 

auxiliary problem, since it is not a priori known whether  decreases with time.  

We shall return to this question soon after the optimal auxiliary processes are 

characterized. 

cŜ

cŜ

en
tS

 The evolution function corresponding to the auxiliary problem (3.5) is given 

by (Tsur and Zemel, 2004) 

Laux(S) = [L(S) + h(S)rψ]F(S)/F(S0). (3.6)

In (3.6), L(S) is the evolution function for the certainty problem, defined in (2.3), and 

h(S) is the hazard function defined in (3.1).  Occurrence of the event inflicts an 

instantaneous penalty ψ (or equivalently, a permanent loss flow at the rate rψ) that 

could have been avoided by keeping the stock at the level S.  The second term in the 

square brackets of (3.6) gives the expected loss due to an infinitesimal decrease in 

stock.  Moreover, this term is positive at the lower bound , whereas , 

hence , implying that  cannot be an optimal equilibrium for the 

auxiliary problem.   

cŜ 0)ˆ( =cSL

0)ˆ( >caux SL cŜ
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The eventual steady state depends on the magnitude of the expected loss: for 

moderate losses, Laux vanishes at some stock level  in the interval auxŜ ),ˆ SS c( .  We 

assume that the root  is unique.  Higher expected losses ensure that LauxŜ aux > 0 

throughout, leaving only the corner state SS aux =ˆ  as a potential steady state.  The 

optimal stock process  converges monotonically to  from any initial state in aux
tS auxŜ

].,ˆ[ SS c    

 In order to characterize the optimal extraction plan for the endogenous 

uncertainty problem (3.2), we compare the trajectories of the auxiliary problem with 

those obtained with the certainty problem corresponding to Sc ≤ 0 (the latter can be 

referred to as the 'non-event' problem because the event cannot be triggered; see Tsur 

and Zemel 2004): 

(i)  When  the optimal certainty stock process  increases in time.  

With event risk, it is possible to secure the certainty value by applying the certainty 

policy, since an endogenous event can occur only when the stock decreases.  The 

introduction of occurrence risk cannot increase the value function, hence  must 

increase.  This implies that the uncertainty and certainty processes coincide,  

for all t, and increase monotonically towards the steady state  

,ˆ
0

cSS < c
tS

.ˆ c

en
tS

c
t

en
t SS =

S

(ii)  When  both  and  decrease in time.  If  is 

increasing, it must coincide with the certainty process , contradicting the 

decreasing trend of the latter.  A similar argument rules out a steady state policy.  

Thus,  must decrease, coinciding with the auxiliary process  and converging 

with it to the auxiliary steady state    

,ˆˆ
0

caux SSS >> c
tS

.

aux
tS en

tS

c
tS

en
tS aux

tS

ˆ auxS
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(iii)  When  the certainty stock process  decreases (or 

remains constant if ) and the auxiliary stock process  increases (or 

remains constant if ).  If  increases, it must coincide with , and if it 

decreases it must coincide with , leading to a contradiction in both cases.  The 

only remaining possibility is to follow the steady state policy  at all t. 

,ˆˆ
0

caux SSS ≥≥

cSS ˆ
0 =

auxSS ˆ
0 =

aux
tS

c
tS

aux
t

S en
t

S

en
tS c

tS

0S=

 To sum:   

(a)   increases at stock levels below  en
tS .ˆ cS

(b)   decreases at stock levels above  en
tS .ˆ auxS

(c) All stock levels in [  are equilibrium states of . ]ˆ,ˆ auxc SS en
tS

 The equilibrium interval is unique to optimal stock processes under 

endogenous uncertainty.  Its boundary points attract any process initiated outside the 

interval while processes initiated within it must remain constant.  This feature is 

evidently related to the splitting of the endogenous uncertainty problem into two 

distinct optimization problems depending on the initial trend of the optimal stock 

process.  At  the expected loss due to occurrence is so large that entering the 

interval cannot be optimal even if under certainty extracting above the regeneration 

rate would yield a higher benefit.  Within the equilibrium interval it is possible to 

eliminate the occurrence risk altogether by not reducing the stock below its current 

level.  As we shall see below, this possibility is not available under exogenous 

uncertainty, hence the corresponding management problem does not give rise to 

equilibrium intervals. 

,ˆ auxS

 Endogenous uncertainty, then, implies more conservative extraction than the 

certainty policy for any initial stock above   Observe that the steady state  is a .ˆ cS auxŜ
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planned equilibrium level.  In actual realizations, the process may be interrupted by 

the event at a higher stock level and the actual equilibrium level in such cases will be 

the occurrence state Sc.   

A feature similar to both the certainty and endogenous uncertainty processes is 

the smooth transition to the steady states.  When the initial stock is outside the 

equilibrium interval, the condition for an optimal entry time to the steady state implies 

that extraction converges smoothly to the recharge rate and the planned steady state 

will not be entered at a finite time.  It follows that when the critical level actually lies 

below  uncertainty will never be resolved and the planner will never know that 

the adopted policy of approaching  is indeed safe.  Of course, in the less fortunate 

case in which the critical level lies above the steady state, the event will occur, 

resolving uncertainty at a finite time.  

,ˆ auxS

auxŜ

3.2  Exogenous events:  Ecological events that are triggered by environmental 

conditions beyond the planers' control are called exogenous.  The current resource 

stock level can affect the hazard of immediate occurrence through its effect on the 

resilience of the ecological system, but the collapse event is triggered by stochastic 

changes in exogenous conditions.  This type of event uncertainty was introduced by 

Cropper (1976) and analyzed by Clarke and Reed (1994), Tsur and Zemel (1998b, 

2004) and Aronsson et al. (1998) in the contexts of nuclear waste control, 

environmental pollution and groundwater resource management.  Here we consider 

the implications for biodiversity conservation.  Under exogenous uncertainty, the fact 

that a certain stock level has been reached in the past without triggering the event does 

not rule out occurrence at the same stock level sometime in the future, as the 

exogenous conditions may turn out to be less favorable.  Therefore, the mechanism 
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that gives rise to the equilibrium interval under endogenous uncertainty does not work 

here. 

 As above, the post-event value is denoted by φ(S).  The expected value from 

an extraction plan that can be interrupted by an event at time T is again given by the 

objective of (3.2), but for exogenous events the probability distribution of T, 

F(t) = Pr{T≤t}, is defined in terms of a stock-dependent hazard rate h(S)  

h(St) = f(t)/[1−F(t)] = −d{log[1−F(t)]}/dt, (3.7)

as 

])([1)(
0∫−−=
t dShexptF ττ . (3.8)

 We assume that no stock level is completely safe, hence h(S) does not vanish 

and the integral in (3.8) diverges for any feasible process as t→∞.  We further assume 

that h(S) is decreasing, i.e., increasing the stock improves conditions for the 

ecological system and reduces the hazard for environmental collapse.    

 Using (3.8) to evaluate the expected value derived from any feasible process 

we obtain the exogenous uncertainty problem:  
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 (3.9) 

subject to (2.1), xt ≥ 0; St ≥ 0 and S0 given.  Unlike the auxiliary problem (3.5) used 

above to characterize the optimal policy under endogenous events, (3.9) provides the 

correct formulation for the exogenous uncertainty problem regardless of whether the 

stock process decreases or increases.   

To characterize the steady state, we need to specify the value Wex(S) associated 

with the steady state policy xex = G(S).  Exogenous events may interrupt this policy, 

hence Wex(S) differs from the value function W(S) of (2.5) obtained from the steady 
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state policy under certainty or endogenous uncertainty.  Under the steady state policy, 

(3.8) reduces to the exponential distribution F(t) = 1 − exp[−h(S)t], yielding the 

expected value  

Wex(S) = W(S) − [W(S)−φ(S)]h(S)/[r+h(S)]. (3.10)

where the second term represents the expected loss over an infinite time horizon.  The 

explicit time dependence of the distribution F(t) of (3.8) does not allow presenting the 

optimization problem (3.9) in an autonomous form.  Nevertheless, the argument for 

the monotonic behavior of the optimal stock process  holds, and the associated 

evolution function can be derived (see Tsur and Zemel, 1998b), yielding  

ex
tS

Lex(S) = L(S) + d{[φ(S)−W(S)]rh(S)/[r+h(S)]}/dS. (3.11)

 When the event corresponds to species extinction, it can occur only once since 

the loss is irreversible.  If a further reduction in stock is forbidden, the post-event 

value is again specified as φ(S) = W(S) − ψ , and the second term of (3.11) simplifies 

to  −ψ h'(S)r2/[r+h(S)]2.  For decreasing hazard functions this term is positive and 

Lex(S) > L(S).  Since L(S) is positive below , so must LcŜ ex(S) be, precluding any 

steady state below .  Thus, the root  of LcŜ exŜ ex(S) must lie above the nonevent 

equilibrium, implying that the extraction policy is more conservative than its nonevent 

counterpart. 

Biodiversity conservation considerations enter via the second term of (3.11) 

which measures the marginal expected loss due to a small decrease in the resource 

stock.  The latter implies a higher occurrence risk, which in turn calls for more 

prudent extraction policy.  Indeed, if the hazard is state-independent, the second term 

of (3.11) vanishes, implying that the evolution functions of the certainty and 

exogenous uncertain event problems are the same and so are their steady states.  In 

this case, extraction activities have no effect on the expected loss hence the tradeoffs 
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that determine the optimal equilibrium need not account for the penalty, no matter 

how large it may be.  For a decreasing hazard, however, the degree of prudence (as 

measured by the difference  between the equilibrium states) increases with 

the penalty ψ . 

cex SS ˆˆ −

The requirement that the stock must not be reduced following occurrence can 

be relaxed.  For this situation, the post-event value changes to φ(S) = Vc(S) − ψ , 

yielding a somewhat more complex expression for the evolution function, but the 

prudence property  remains valid (Tsur and Zemel, 1998b). cex SS ˆˆ >

 Another interesting situation involving exogenous events arises when the 

ecological damage can be fixed (at the cost ψ) following occurrence.  For example, 

the extinct population may not be endemic to the inflicted region and can be restored 

by importing individuals from unaffected habitats.  Under this scenario, event 

occurrence inflicts the penalty but does not affect the hazard of future events.  The 

post-event policy, then, is to remain at the steady state and receive the post-event 

value Wex(S) − ψ.  Using F(t) = 1 − exp[−h(S)t] for recurrent events yields the 

expected steady state value Wex(S) = W(S) − [W(S)−Wex(S)+ψ]h(S)/[r+h(S)].  Solving 

for Wex(S), we find Wex(S) = W(S) − ψh(S)/r,  reducing (3.11) to  

Lex(S) = L(S) − d[ψh(S)]/dS. (3.12)

 When the penalty itself depends on the stock, its policy implications become 

more involved.  Of particular interest is the case of increasing ψ(S) and constant 

hazard, for which (3.12) implies more vigorous extraction.  This situation corresponds 

to the irreversible catastrophic events of Clarke and Reed (1994), which give rise to 

extraction policies that are less prudent than their certainty counterparts. 

 The results presented in this section highlight the sensitivity of the optimal 

uncertainty processes to the details of an interrupting event.  The type of uncertainty 
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determines the equilibrium structure: endogenous uncertainty gives rise to equilibrium 

intervals while exogenous uncertainty implies isolated equilibrium states.  In most 

cases, the expected event loss encourages conservation (more prudent extraction 

policies), but the opposite behavior can also be obtained.  

4.  Concluding comments 

Renewable resources are typically considered in the context of their potential 

contribution to human activities but they also support ecological needs that are often 

overlooked.  This work examines the implications of threats of ecological events for 

the management of renewable resources.  The occurrence of an ecological event 

inflicts a penalty and changes the management regime.  Unlike other sources of 

uncertainty (time-varying costs and demand, stochastic regeneration processes, etc.) 

which allow to update the extraction policy along the process and respond to changing 

conditions, event uncertainty is resolved by occurrence, when policy changes are no 

longer useful.  Thus, the expected loss must be fully accounted for prior to the event 

occurrence, with significant changes to the optimal exploitation rules.  

We distinguish between two types of events that differ in the conditions that 

trigger their occurrence.  An endogenous event occurs when the resource stock 

crosses an uncertain threshold level, while exogenous events are triggered by 

coincidental environmental conditions.  We find that the optimal exploitation policies 

are sensitive to the type of the threatening events.  Under endogenous uncertain 

events, the optimal stock process approaches the nearest edge of an equilibrium 

interval, or remains constant if the initial stock lies inside the equilibrium interval.  

The eventual equilibrium stock depends on the initial conditions.  This phenomenon is 

familiar from the theory of irreversible investments under uncertainty, and is referred 

to as 'hysteresis'.  In contrast, the equilibrium states under exogenous uncertain events 



 21

are singletons that attract the optimal processes from any initial stock.  The shift of 

these equilibrium states relative to their certainty counterparts is due to the marginal 

expected loss associated with the events and serves as a measure of how much 

prudence it implies.   
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