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Abstract
An open access model is formulated where  X  is a renewable resource and  E  is the level
of effort devoted to harvest.  Net growth is assumed to exhibit critical depensation and
the open access system is described by two nonlinear differential equations

 X
•

= rX(X K
1
−1)(1− X K

2
) − qXE   and     

� 

E
•

= α[(p − s)qXE − cE] , where   r > 0  is the

intrinsic growth rate,  K1  is the minimum viable population level,  K2  is the
environmental carrying capacity  (K2 > K1 > 0),  q > 0  is the catchability coefficient,  α >
0  is an adjustment coefficient,  (p - s) > 0  is the market price net of shipping cost, and  c

> 0  is the unit cost of effort at the harvest site.  It is shown that the   E
•

= 0  isocline is a
vertical line at   X∞ = c [(p − s)q]   and that the open access system passes through a
supercritical Hopf bifurcation as  X∞  moves from a level above   (K

1
+ K

2
) 2   to a level

below   (K
1
+ K

2
) 2 .  For  X∞  above   (K

1
+ K

2
) 2   the open access equilibrium is

locally stable.  For  X∞  below   (K
1
+ K

2
) 2   the open access equilibrium will be locally

unstable.  At   X∞ = (K
1
+ K

2
) 2   the system has a stable limit cycle.  This analysis is

useful in interpreting the economic history of the passenger pigeon.  The limited
empirical evidence would suggest that   X∞ = c [(p − s)q]   declined below   (K

1
+ K

2
) 2

during the last half of the  19th  century as a result of improved rail transport and
communications (the telegraph).  It is thought that the passenger pigeon was extinct in the
wild by 1901.  The last passenger pigeon died in captivity at the Cincinnati Zoological
Gardens on September  1st,  1914.
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Open Access and Extinction of the

Passenger Pigeon in North America

I.  Introduction

In the autumn of 1813, I left my house at Henderson, on the banks of the
Ohio, on my way to Louisville.  In passing over the Barrens a few miles
beyond Hardensburgh, I observed the pigeons flying from northeast to
southwest, in greater numbers than I thought I had ever seen them before,
and feeling an inclination to count the flocks that might pass within the
reach of my eye in one hour, I dismounted, seated myself on an eminence
and began to mark with my pencil, making a dot for every flock that
passed.  In a short time, finding the task which I had undertaken
impracticable, as the birds poured in in countless multitudes, I rose, and
counting the dots then put down, found that one hundred and sixty-three
had been made in twenty-one minutes.  I traveled on, and still met more
the further I proceeded.  The air was literally filled with pigeons; the light
of noonday was obscured as by an eclipse; the dung fell in spots, not
unlike melting flakes of snow; and the continued buzz of wings had a
tendency to lull my senses to repose.

John James Audubon, Ornithological Biography, I (1833)

Audubon subsequently estimated the size of this flock to exceed one billion birds.

Schorger (1955, p.204) places the population of passenger pigeons, at the time of

European discovery of North America, at between three and five billion birds.  By

migrating and nesting in such huge flocks, the passenger pigeon may have reduced the

effectiveness of natural predators (various raptors, but especially the peregrine falcon) as

well as the mortality of juveniles (a single chick might be fed by several nesting adults).

After European colonization, the aggregation of passenger pigeons into large flocks

would make them conspicuous and vulnerable to rent-seeking  homo economicus.  In less

than 90 years after Audubon's journey from Henderson to Louisville, Kentucky, the

passenger pigeon would be extinct in the wild.
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This paper has two objectives.  The first is to develop an open access model

which includes extinction as a possible dynamic outcome.  The traditional, continuous-

time model of pure open access, based on logistic net growth, does not allow for

extinction.  See Clark (1990, pp. 189-190).  A model where net growth exhibits critical

depensation is formulated and a sufficient condition for the local  instability  of the open-

access equilibrium is identified.  The Bendixson – Du Lac Criterion can be used to rule

out limit cycles above and below a critical value at   X = (K
1
+ K

2
) 2 .  The relationship

of the open access equilibrium stock,  X∞ = c [(p − s)q]   to the critical value

 X = (K
1
+ K

2
) 2   determines the dynamic behavior of the system.  Numerical analysis

shows that the system undergoes a supercritical Hopf bifurcation as  X∞  passes from

above   X = (K
1
+ K

2
) 2   to a level below   X = (K

1
+ K

2
) 2 .

The second objective is to survey the literature describing the economic history of

the passenger pigeon to determine if the condition for local instability was likely to have

been met.  Extension of the railroad system in the early  1850s  allowed passenger

pigeons, taken from nesting sites in the mid-west, to be expressed shipped to Boston,

New York, and Philadelphia, where they were sold at market and often served as entrees

in fine restaurants.  The telegraph allowed  "pigeoners"  to learn about the location of

large flocks.  These cost-reducing, market-expanding innovations, in combination with

the biology of the passenger pigeon and the open access nature of the industry, led to

unprecedented harvests between 1850 and 1885, and extinction, in the wild, by 1901.

The remainder of this paper is organized as follows.  In the next section the

literature on open access is reviewed and a model incorporating critical depensation is

analyzed.  A sufficient condition for the local instability of the open access equilibrium is
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identified and the Bendixson Du – Lac Criterion is used to rule out limit cycles in two

regions of the phase plane.  For   X∞ = c [(p − s)q] > (K
1
+ K

2
) 2   the open access

equilibrium will be locally stable.  For   X∞ = c [(p − s)q] < (K
1
+ K

2
) 2   the open access

equilibrium is locally unstable and the resource is harvested to extinction.  Numerical

analysis reveals a stable (but empirically unlikely) limit cycle when

 X∞ = c [(p − s)q] = (K
1
+ K

2
) 2 .

Section III discusses the biology and economics of the passenger pigeon.

Attention is focused on the value of parameters that affect local stability of the open

access equilibrium.  The paper concludes in Section IV.

II.  Open Access

Open access might be defined as a situation where a common property resource is

harvested by competitive, rent-seeking individuals, with no regulation on entry, exit, or

the level of harvest.1  The first static economic analysis of open access, in the context of a

common-property fishery, was the classic article by Gordon (1954).  Smith (1969)

provided a general analysis of open access dynamics using two, non-linear, differential

equations, again within the context of a common-property fishery.  The first empirical

study may have been Wilen (1976) who estimated two first-order difference equations

from data on the commercial harvest of the North Pacific fur seal.  A phase-plane plot of

the seal population and the number of sealing vessels from  1882  to  1900  revealed the

start of a convergent spiral to a stable, non-extinction equilibrium.  Bjørndal and Conrad

(1987) estimate a similar model for the North Sea herring fishery which was closed to
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fishing in  1977  when the stock was believed to have fallen to about seven percent of its

historical maximum.  More recently, Brander and Taylor (1998) use an open access

model to speculate on the evolution of the human population and the resource base on

Easter Island.

The traditional specification of the open access model employs a logistic net

growth function and might be written as

    

� 

X
•

= rX(1− X K) −qXE

E
•

= α[pqXE − cE]

(1)

where  X  is the resource stock and  E  is the level of effort (an aggregate measure of

labor and capital) devoted to harvesting the resource.  The first term on the right-hand-

side (RHS) of the differential equation describing the change in the resource stock is the

logistic net growth function,  F(X) = rX(1− X K) , where  r > 0  is the intrinsic growth

rate and  K > 0  is the environmental carrying capacity.  The second term in this

differential equation is the level of harvest,  Y = qXE , where  q > 0  is called the

catchability coefficient.  This term can be regarded as a special case of the Cobb-Douglas

production function with unitary output elasticities for the resource stock and effort.  If

net growth is positive and greater than harvest, the stock increases (    

� 

X
•

> 0).  If harvest is

greater than net growth the stock decreases (    

� 

X
•

< 0).

The second equation in Specification (1) assumes that effort responds to the sign

and size of net revenue.  On the RHS of the second differential equation,  p > 0  is
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assumed to be the constant unit price for the harvested resource so that  pqXE  is the

revenue from harvest at instant t.  The cost of harvest is assumed to be linear in effort,

where  c > 0 is the unit cost of effort.  Thus,  [pqXE - cE]  is instantaneous net revenue,

or what Gordon (1954) referred to as "rent."  The parameter  α  > 0  is an adjustment

parameter reflecting the responsiveness of effort to positive or negative net revenue.  If

net revenue is positive, effort expands  (    

� 

E
•

>0).  If net revenue is negative, effort contracts

(    

� 

E
•

<0).

This system has two isoclines (nullclines).  Along the negatively sloping line

E=(r/q)(1-X/K),      

� 

X
•

=0.  Along the vertical line  X∞=c/(pq),      

� 

E
•

=0.  If  K > c/(pq) > 0,

there will be a unique, locally stable, open-access equilibrium at (X∞,E∞), where

 E∞
 = r(pqK - c)/(pq2K) > 0 .  See Figure 1.  Clark (1990, p.190) shows that the

eigenvalues of the linearized system are given by

    

� 

λ i = −
rX∞
2K

±
r2X∞

2

4K 2
−αpq2X∞E∞ ,  i = 1,2 (2)

The first term on the RHS of (2) is negative and, depending on the sign of the

discriminant,  (X∞,E∞)  will be a locally stable node or the focus of a stable spiral (a sink).

Clark then uses the Bendixson Du – Lac Criterion to rule out limit cycles.  Thus, for

 K > c pq > 0 ,  Specification (1) does not admit open-access extinction and would not be

an appropriate specification for modeling the dynamics of the passenger pigeon.2
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Consider now a specification where net growth exhibits critical depensation, as

described in Clark (1990, pp. 20-21).  The net growth function is a cubic and may be

written as  F(X) = rX(X K
1
−1)(1− X K

2
) ,  where  r > 0  is the intrinsic growth rate

when  X  is slightly greater than  K1.  This function has roots (zeros) at  X = 0,  X = K1,

and  X = K2,  where  K1  is referred to as the minimum viable population level and  K2  is

the environmental carrying capacity (K2 > K1 > 0).  See Figure 2.

The differential equation for effort is modified so that  (p - s)  is market price,  p,

net of transport cost,  s,  from the harvest site.  The open access system becomes

 

X
•

= rX(X K
1
−1)(1− X K

2
) − qXE

E
•

= α[(p − s)qXE − cE]

(3)

Analysis of Specification (3) proceeds as follows.  Along the curve

 E = (r q)(X K
1
−1)(1− X K

2
) ,      

� 

X
•

= 0 .  Along the vertical line  X∞=c/[(p - s)q],      

� 

E
•

=0.

The     

� 

X
•

= 0  isocline has two roots at X = K1  and  X = K2.  The maximum of the     

� 

X
•

= 0

isocline occurs at  X=(K
1
+ K

2
) 2 .  This turns out to be a critical value vis-à-vis  the

 E
•

 = 0  isocline where  X∞=c/[(p - s)q].  If   c [(p − s)q] < (K
1
+ K

2
) 2 ,  the open access

equilibrium will be locally unstable.  If   c [(p − s)q] > (K
1
+ K

2
) 2   the open access

equilibrium will be locally stable.  As   X∞ = c [(p − s)q]   moves from a level above

 (K
1
+ K

2
) 2   to a level below   (K

1
+ K

2
) 2   the open access system goes through a

supercritical Hopf bifurcation.  In the event that   X∞ = c [(p − s)q] = (K
1
+ K

2
) 2   there

is a stable limit cycle where the system, [X(t),E(t)],  evolves in counter-clockwise motion

along a closed orbit.  The resource and the industry go through a perpetual  “boom-bust”
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cycle, but the resource is never driven to extinction.  A sufficient condition for the local

instability  of  (X∞,E∞)  is

 c [(p − s)q] < (K
1
+ K

2
) 2 (4)

This condition is formally derived in the Appendix.  Also in the Appendix, the

Bendixson – Du Lac Criterion is used to show that a limit cycle will not exist if  X  is

confined to the region  0 ≤ X < (K
1
+ K

2
) 2   or if it is confined to the region

 K2
≥ X > (K

1
+ K

2
) 2 .  A phase plane diagram for this system is drawn in Figure 3.

Figure 4 shows numerical simulations of the system for three cases.  In all three cases

r=0.2,  K1=0.1,  K2=1,  (so   (K
1
+ K

2
) 2 = 0.55 )  q=1,  p=2,  s=1,  α=0.5,  X(0)=0.95,

and  E(0)=0.1.  In Figure 4a,  c=0.6  so that   X∞ = 0.6 > (K
1
+ K

2
) 2 = 0.55  and the open

access equilibrium is the focus of a stable spiral.  In Figure 4b,  c=0.55  so that

 X∞ = 0.55 = (K
1
+ K

2
) 2   and the open access equilibrium is the focus of a stable limit

cycle.  In Figure 4c,  c=0.5  so that   X∞ = 0.5 < (K
1
+ K

2
) 2 = 0.55   and the resource is

driven to extinction.

We now turn to the economic history of the passenger pigeon to see how

 X∞ = c [(p − s)q]   might have changed during the last half of the  19th  century.
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III.  The Biology and Economics of the Passenger Pigeon

The passenger pigeon (Ectopistes migratorius), with its small head and neck,

powerful wings, and long tail feathers, was built for speed.  Based on "date and time"

observations of the same flock at two different locations, it was estimated that the

passenger pigeon could reach a sustained speed of 60 miles per hour during its spring and

fall migrations.  The male of  the species reached a length of 16.5 inches.  The blue or

bluish gray feathers on its back and wings provided an "elegant" contrast to the reddish-

brown breast feathers, which faded to a white lower belly.  The female of the species was

an inch shorter in length and less vivid in color.

In pre-colonial North America, the passenger pigeon ranged from the eastern

seaboard to the plains west of the Mississippi river.  Pigeons would over-winter as far

south as the Gulf of Mexico and their northward migration in spring would take them into

present-day Manitoba, Ontario, Quebec, and the Canadian Maritimes.  The spring

migration would begin in late February or early March depending on weather and snow

cover.  The pigeons principal sources of food were the beechnuts and acorns found in the

vast hardwood forests which still covered much of New York, Pennsylvania, Ohio,

Indiana, Michigan and Wisconsin in the early 19th century.

Archaeological excavations at Native American encampments indicate that the

passenger pigeon was an important seasonal food source.  European colonists also

harvested the passenger pigeon, especially at the nesting sites where millions of birds

would congregate to build stick, platform-like, nests.  Several nesting sites in New York

State in the early- and mid-19th century were estimated to have been 30 miles long and
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three to six miles wide.  The nests were often packed so close together that as the young

pigeons (called squabs) grew, their combined weight would cause large branches to

break, hurtling thousands of squabs to the forest floor.

It was at the nest sites that both adults and squabs were especially susceptible to

predation.  The adults would take turns tending the nest, with the male foraging for food

and water in the morning, then returning to the nest to allow the female to forage from

late morning into the early afternoon.  The beechnuts and acorns ingested by the adults

were transformed into a high-protein, high-fat "milk" or curd and later regurgitated to

feed the fast-growing squabs.  Well-fed squabs would weigh more than adults and were

often the favored food of both Native Americans and colonists.3

Squabs were easily harvested by simply knocking the nests apart with a pole or

branch.  Adults were shot or netted.  Mortality of nesting adults was likely to induce

mortality in squabs.  The clearing of beech and oak forests undoubtedly reduced the

principal natural food sources of the passenger pigeon, but it was probably the practice of

indiscriminant harvesting of squabs that lead to the rapid decline in the abundance of the

passenger pigeon in the mid- and late- 19th  century.

During this period two significant developments took place in transportation and

communication.  First, railroad tracks were extended into the mid-west allowing pigeons

and squabs taken in Ohio, Indiana, Michigan, and Wisconsin to be packed in ice and

shipped to New York, Boston, and Philadelphia in less than a week.  (Pigeons and squabs

were sold wholesale to restaurants and retail to individuals.)  Second, the telegraph

allowed "pigeoners" and buyers to communicate about the location of nesting sites and

the market prices they might expect to receive on the east coast.
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Professional pigeoners, who followed the flocks from nesting site to nesting site,

were joined by local farmers and game hunters.  In an open area near the nesting site a

patch of ground was cleared, watered down, and covered with a mixture of corn kernels

and salt.  (Passenger pigeons seemed to crave salt.)  The site was chosen so that saplings

on the perimeter of the patch could be bent and used to spring the nets when pigeons had

been attracted to the bait.  To bring the baited patch to the attention of flocks flying to

and from the nesting site, a "stool pigeon" was tethered to a perch in the middle of the

patch.   As a flock passed overhead, the perch was pulled from beneath the stool pigeon

(by a cord running from the pigeoner's blind) causing it to flutter to the ground as if

landing for food.  If the stool pigeon was successful in attracting the flock, the pigeoner

would wait until the baited patch was thick with feeding pigeons and then pull a second

cord which would spring the nets.  Depending on the size of the nets and the density of

feeding pigeons it was not uncommon to trap 200 - 600 pigeons.  In a nesting near

Frankfort, Michigan in 1874, one pigeoner secured nearly 1,300 pigeons in a single set

[Schorger (1955, p. 184)].

The sufficient condition for local instability of  (X∞,E∞)  in Specification (3), was

 c [(p − s)q] < (K
1
+ K

2
) 2 .  Consider, first, the ratio on the left-hand-side.  The

parameter  c > 0  would be the opportunity cost of professional pigeoners, local netters

and game hunters.  A plausible measure for the opportunity cost for these individuals

might be the  daily farm wage,  since many local netters were engaged in agriculture.

A time-series for the daily farm wage,  c,  from 1857 to 1885, is given in Table 1.

This time-series, along with the shipping cost index,  I,  were extracted from Adams

(1943).  Shipping charges were  $6-$12  per barrel [Schorger (1955 p.146)].  A barrel
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would contain about  300  birds.  E. Osborn,  a professional pigeoner, kept detailed

business records during the years he spent netting and shooting passenger pigeons.

Mershon (1907, p.111) reproduces a letter from  Osborn  to  H. T. Phillips,  a game-

dealer in Detroit, in which  Osborn  recalls that in 1862, the shipping cost from Monroe,

Wisconsin was  $7-$9  per barrel.  Rescaling the Adams shipping index so 1862 = 1.00

and assuming a shipping cost of  $8  for  300  birds implies  s=$0.32  per dozen birds in

1862.  Multiplying the re-scaled shipping index by  $0.32/dozen  yields the shipping cost

time-series,  s,  in the fourth column in Table 1.

The wholesale prices of passenger pigeons in New York City,  p,  were calculated

as the sample mean of wholesale prices in the months of  April,  May,  and  June  for

each year,  1857-1885,  as reported in the  New York Daily Tribune.  The price was for a

dozen pigeons and the market reporter would occasionally comment on the quantity,

quality, and origin of pigeons reaching the market.  There would be considerable

variation in prices within a year based not only on the quantity supplied, but also on the

quality or  "freshness"  of the  "wild"  pigeons.  Warm weather might result in barrels of

spoiled pigeons being confiscated and destroyed by the New York City Department of

Health, with the buyer/shipper in the mid-west incurring a loss for what was paid to the

pigeoner as well as the shipping cost.

During the period  1857-1885,  the average wholesale price was  $1.55/doz.,  the

average shipping cost was  $0.36/doz.,  and the average farm wage was  $1.09/day.  The

remaining parameter needed to calculate  X∞,  is the catchability coefficient, q.  In

Specifications (1) or (3),  the production function takes the form  Y=qXE.  Solving for  q

yields  q=Y/(XE),  where  Y  is the number of birds harvested from a nesting site, X  is
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the number of birds at the nesting site, and  E  is the number of "netter days," the product

of the estimated number of netters and the number of days spent harvesting pigeons at a

particular nest site.  The catchability coefficient has the dimension  1/days.  Reports and

descriptions of the netting of pigeons at two large nest sites in 1874 and 1878 will be

used to calibrate the parameter  q.

In Shelby, Michigan in 1874,  H.T. Philips,  the game dealer from Detroit,

estimates that 1,075,000 pigeons were shipped over a  30  day period from a large nest

site worked by 600 professional netters [Schorger (1955 pp.146-149)].  If the nesting

population was 5 million pigeons, then q = 1,075,000/(5,000,000x600x30) = 1.19x10-5.

There were conflicting reports on the harvest from a large nest site at Petoskey,

Michigan in 1878.  E. T. Martin  was a buyer and shipper with offices in Chicago.

Professor  H. B. Roney  was an early proponent of conservation and laws to limit the

netting of adults and the harvest of squabs.  Roney (1879) estimates that a grand total of

one billion  pigeons were killed, including those that were harvested and shipped and

those killed but never shipped.  Martin (1879) regards Roney's estimate as inflated and,

based on his records, estimates the total number of birds shipped to be about 1,107,866.

The first shipments from Petoskey started on March 22nd and ended on August 12th.

Assuming a six day week (or about 120 working days) and 500 netters, this would imply

E = 60,000 netter days.  The nest site at Petoskey was estimated to have been 40 miles

long and three to 10 miles in width.  If we adopt Martin's estimate of harvest and put the

nesting population at 1 billion birds the catchability coefficient would be

q = 1,107,866/[(1.0x109)x(60,000)] = 1.85x10-8.

In Table 2 we convert the average wholesale price and shipping cost to a per

pigeon basis and then use the estimates of  q  from Shelby, Michigan in 1874 and from
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Petoskey, Michigan in 1878 to calculate  X∞,  the open access equilibrium stock.  With

the price per pigeon now  p = $0.13,  shipping cost  s = $0.03  per pigeon, and the cost

per netter day of  c = $1.09,  the average open access equilibrium stock,  X∞,  would be

X∞ = 915,966  pigeons based on the  q-value  from Shelby, Michigan in 1874, or

X∞ = 589,189,189  pigeons, based on the  q-value  from Petoskey in 1878.  For a

comparison with   (K
1
+ K

2
) 2 ,  it is useful to express these values in units of 109

pigeons.  The Shelby value is rounded up to one million, and the Petoskey value is

rounded up to  600  million.  It is hypothesized that  0.6x109 ≥ X∞ ≥ 0.001x109.

Remember that if  X∞=c/[(p-s)q]  is less than  (K
1
+ K

2
) 2 ,  the open-access

equilibrium will be locally unstable  The pre-colonial estimate of  K2  was between

3x109  and  5x109  pigeons.  During the 19th century the clearing of beech and oak forests

undoubtedly reduced the value of  K2.  Offsetting this reduction in the pigeons' natural

food supply was the increase in the cultivation of corn and wheat, which the pigeons, to a

farmer's distress, would also consume.  If, by the mid-19th  century, the value of  K2  had

declined to  2.0x109  and if the value of  K1  were small but positive, the average,

 (K
1
+ K

2
) 2   

� 

≈1.0x109 > X∞  

� 

≈0.6x109,  and  (X∞,E∞)  would be locally unstable.  While

the available empirical evidence is limited, and far from conclusive, it would seem to

suggest that the railroad, telegraph, and open access nature of the industry satisfied

Inequality (4) and led to the ultimate extinction of the passenger pigeon.

IV.  Conclusions and Caveats

Based on the available data and accounts of the commercial exploitation of the

passenger pigeon in North America, there appears to be evidence supporting an open-

access model leading to extinction.  This was likely to have occurred because

 X∞ = c [(p − s)q] < (K
1
+ K

2
) 2   and  the population was less than   (K

1
+ K

2
) 2   during

the last half of the  19th  century.  It was not possible to obtain time-series data that would

allow a precise estimate of  q,  the catchability coefficient.  The estimates of  q  from

accounts at the Shelby, Michigan nest site in 1874 and the Petoskey, Michigan site in

1878 yielded estimates of  X∞  between 0.001x109 and 0.6x109 pigeons.
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The carrying capacity,  K2,  and the minimum viable population,  K1,  were

speculative.  We know with certainty that  K1 ≥ 1,  and that  K2  was likely to have

declined from the pre-colonial estimate of  3x109  to  5x109  pigeons.  The remaining

forest, in the mid-1800s, plus the production of corn and wheat would probably have

supported a pigeon population of  1x109  to  2x109  birds.  Thus, even with the decline in

carrying capacity it would seem that given the prevailing market price for pigeons,

shipping costs from the mid-west, and the opportunity cost of netters, that  X∞  was less

than  (K
1
+ K

2
) 2 .

We also know, with certainty, that the passenger pigeon became extinct in the

wild around 1900.  The rapid decline in abundance from 1813 is an unfortunate testimony

to the efficiency of rent-seeking by game hunters in the 19th century.



15

References

Adams, T. M. 1943. Prices Paid by Vermont Farmers for Good and Services and

Received by Them for Farm Products, 1790 - 1940, Ph.D. Dissertation, Cornell

University.

Audubon, J. J. 1831-39. Ornithological Biography, (5 Volumes) Edinburgh.

Bjorndal, T. and J. M. Conrad. 1987. "The Dynamics of an Open Access Fishery,"

Canadian Journal of Economics, 20(1):74-85.

Brander, J. A. and M. S. Taylor. 1998. "The Simple Economics of Easter Island:

A Ricardo-Malthus Model of Renewable Resource Use," American Economic Review,

88(1):119-138.

Brooks, R., Murray, M., Salant, S., and J. C. Weise. 1999. "When is the Standard

Analysis of Common Property Extraction under Free Access Correct?  A Game-

Theoretic Justification for Non-Game-Theoretic Analysis," Journal of Political Economy,

107(4):843-858.

Clark, C. W. 1990. Mathematical Bioeconomics:  The Optimal Management of

Renewable Resources, Wiley-Interscience, John Wiley & Sons, New York.

Conrad, J. M. 1999. Resource Economics, Cambridge University Press, New

York.

Gordon, H. S. 1954. "The Economic Theory of a Common Property Resource:

The Fishery," Journal of Political Economy, 62:124-42.



16

Homans, F. R. and J. E. Wilen. 1997. "A Model of Regulated Open Access

Resource Use," Journal of Environmental Economics and Management, 32:1-21.

Mershon, W. B. 1907. The Passenger Pigeon, The Outing Publishing Company,

New York.

New York Daily Tribune. 1857 - 1885. New York.

Pokagon, S. 1895. "The Wild Pigeon of North America," The Chautauquan, 22.

(Reprinted in Mershon (1907) as Chapter V.)

Schorger, A. W. 1955. The Passenger Pigeon:  Its Natural History and

Extinction, The University of Wisconsin Press, Madison.

Smith, V. L. 1969. "On Models of Commercial Fishing," Journal of Political

Economy, 77:181-198.

Wilen, J. E. 1976. "Common Property Resources and the Dynamics of

Overexploitation:  The Case of the North Pacific Fur Seal," Department of Economics,

Programme in Natural Resource Economics, Paper No. 3, The University of British

Columbia, Vancouver.



17

Acknowledgments.  The author owes a debt of gratitude to Horst Thieme and the

students in his Spring, 2005, class “Mathematical Population Dynamics II,” who

identified the supercritical Hopf bifurcation at  X = (K
1
+ K

2
) 2 .

Endnotes
1Homans and Wilen (1997) would refer to this situation as "pure" open access, and

contrast it to a situation they call "regulated" open access, where a management authority

sets a total allowable catch (TAC).  Brooks et al. (1999) analyze pure open access using a

game-theoretic approach and determine when the two approaches (continuous-time

dynamical systems and game-theoretic) yield the same predictions.

2In discrete-time, the system

    

� 

X t+1 −X t = rXt (1− Xt K) − qXtEt

Et +1 − Et = α[pqXtEt − cEt ]

is capable of more complex dynamics, including limit cycles and possibly deterministic

chaos.  See Conrad (1999).

3Simon Pokagon was a Pottawattomie chief.  He was the author of the "Red Man's

Greeting," and was regarded as the "poet, bard and Longfellow of his race" by many non-

natives.  His father, chief before him, sold the site of Chicago and surrounding lands to

the U.S. Government in 1833.  In an article on the wild (passenger) pigeon published in

The Chautauquan in November, 1895, and reprinted in Mershon (1907), Pokagon notes

"A pigeon nesting was always a great source of revenue to our people.  Whole tribes

would wigwam in the brooding places.  They seldom killed old birds, but made great

preparation to secure their young, out of which the squaws made squab butter and

smoked and dried them by the thousands for future use.  Yet, under our manner of

securing them, they continued to increase."
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Appendix

The Jacobian of the linearization of  Specification (3),  evaluated at (X∞,E∞), is given by

 

J =
(− r K

2
)X∞ (X∞ K

1
−1) + (1− X∞ K

2
)r(2X∞ K

1
−1) − qE∞ −qX∞

α(p − s)qE∞ 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(A.1)

Denote the eigenvalues (characteristic roots) of  J  by  λ1  and  λ2.  It is well known that

    

� 

λ1 + λ2 = Tr(J )  and that     

� 

λ1 • λ2 = J .  For  (X∞,E∞)  to be stable the eigenvalues must

both be negative if real or have a negative real part if complex conjugates.  This cannot

be the case if

 (− r K
2
)X∞ (X∞ K

1
−1) + (1− X∞ K

2
)r(2X∞ K

1
−1) − qE∞  > 0 (A.2)

(A.2) is a sufficient condition for the local instability of  (X∞,E∞).  If one substitutes

 E∞ = (r q)(X∞ K
1
−1)(1− X∞ K

2
)  into (A.2), and does the algebra, it can be shown that

(A.2) implies

 

c

(p − s)q
<

(K
1
+ K

2
)

2
(A.3)

as stated in Inequality (4) in the text.

If  (X∞,E∞)  is locally unstable there is a possibility that it might be the focus of a

stable limit cycle.  The Bendixson – Du Lac Criterion, if satisfied, rules out the existence

of a limit cycle.  The Bendixson – Du Lac Criterion says that if   X
•

= F(X,E)   and

 E
•

= G(X,E)   are smooth functions in a given, simply-connected, region,  D,  and if

B(X,E)  is also a smooth function in  D,  then  if  the expression
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∂(BF)

∂X
+
∂(BG)

∂E
(A.4)

does not change sign in  D,  the system   X
•

= F(X,E)   and   E
•

= G(X,E)   has no closed

trajectories in  D,  and thus no limit cycles.

For  Specification (3),  define   B(X,E) ≡ (XE)−1 .  Then

 

∂(BF)

∂X
+
∂(BG)

∂E
=

r

EK
2
K

1

⎡

⎣
⎢

⎤

⎦
⎥(K

1
+ K

2
− 2X) (A.5)

This expression will not change sign if   X < (K
1
+ K

2
) 2   or if   X > (K

1
+ K

2
) 2 .  In the

first instance we are in the region where if  (A.3)  is also satisfied, the open access

equilibrium  (X∞,E∞)  is unstable.  In the second instance,  if  
 

c

(p − s)q
>

(K
1
+ K

2
)

2
,  we

are in the region where  (X∞,E∞)  will be the focus of a stable spiral.  See Figure 3.  In

Figure 4b we numerically show the case where   X∞ = c [(p − s)q] = 0.55 = (K
1
+ K

2
) 2

and observe that the open access equilibrium is the focus of a stable limit cycle.  This

case does not violate the Bendixson – Du Lac Criterion because the limit cycle produces

values of  X(t)  that oscillate above and below  (K
1
+ K

2
) 2 = 0.55 .  If by the mid – 19th

century  (A.3)  was holding and the passenger pigeon population was  permanently

below   (K
2
+ K

1
) 2 ,  then no limit cycles exist and the system would be on an

irreversible course to extinction.
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Table 1.  The New York City Wholesale Price for Passenger Pigeons (p=$/doz.), A

Shipping Index (I, 1862=1.00), Shipping Cost (s=$/doz.), and the Daily Farm Wage

(c=$/day) for 1857 - 1885.

Year p I s c
1857 $1.70 1.03 $0.33 $0.92

1858 $1.13 1.03 $0.33 $0.87

1859 $1.63 1.00 $0.32 $0.91

1860 $1.15 1.00 $0.32 $0.89

1861 $0.75 1.03 $0.33 $0.82

1862 $0.72 1.00 $0.32 $0.85

1863 $1.33 1.07 $0.34 $1.00

1864 $2.10 1.03 $0.33 $1.40

1865 $3.28 1.27 $0.41 $1.29

1866 $1.46 1.24 $0.40 $1.36

1867 $1.73 1.27 $0.41 $1.47

1868 $1.58 1.27 $0.41 $1.48

1869 $2.00 1.27 $0.41 $1.40

1870 $1.60 1.24 $0.40 $1.14

1871 $1.50 1.21 $0.39 $1.15

1872 $1.63 1.21 $0.39 $1.17

1873 $1.31 1.24 $0.40 $1.26

1874 $1.39 1.24 $0.40 $1.24

1875 $1.33 1.27 $0.41 $1.26

1876 $1.05 1.27 $0.41 $0.93

1877 $1.83 1.24 $0.40 $0.76

1878 $0.79 1.24 $0.40 $0.81

1879 $1.50 1.10 $0.35 $0.81

1880 $1.00 1.10 $0.35 $0.83

1881 $2.16 1.07 $0.34 $0.88

1882 $1.61 1.07 $0.34 $1.16

1883 $1.42 1.03 $0.33 $1.17

1884 $2.51 1.03 $0.33 $1.29

1885 $1.75 0.93 $0.30 $1.09



21

Table 2.  Estimates of q, the Catchability Coefficient, for Two Nesting Sites,  Shelby,

Michigan in 1874 and Petoskey, Michigan in 1878, and the Implied Values for

X∞=c/[(p-s)q].

Shelby, Michigan in 1874 Petoskey, Michigan in 1878

Y = 1,075,000 (pigeons) Y = 1,107,866 (pigeons)

E = 18,0000 (netter days) E = 60,000 (netter days)

X = 5x106 (pigeons) X = 1x109 (pigeons)

q = 1.19x10-5 q = 1.85x10-8

p = 0.13 ($/pigeon) p = 0.13 ($/pigeon)

s = 0.03 ($/pigeon) s = 0.03 ($/pigeon)

c = 1.09 ($/day) c = 1.09 ($/day)

X∞ = 915,966 ≈  0.001x109 (pigeons) X∞ = 589,189,189 ≈  0.6x109 (pigeons)



22

Figure 1.  The Phase-Plane Diagram for Specification (1)
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Figure 2.  The Critically Depensatory Net Growth Function
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Figure 3.  The Phase-Plane Diagram for Specification (3)
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Figure 4a: (K1+K2)/2=0.55, X∞=0.6
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Figure 4b: (K1+K2)/2=0.55, X∞=0.55
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Figure 4c: (K1+K2)/2=0.55, X∞=0.5
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